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Abstract: We analyze the dynamics of neutral black rings in Taub-NUT spaces and

their relation to systems of D0 and D6 branes in the supergravity approximation. We

employ several recent techniques, both perturbative and exact, to construct solutions in

which thermal excitations of the D0-branes can be turned on or off, and the D6-brane

can have B-fluxes turned on or off in its worldvolume. By explicit calculation of the

interaction energy between the D0 and D6 branes, we can study equilibrium configurations

and their stability. We find that although D0 and D6 branes (in the absence of B fields,

and at zero temperature) repeal each other at non-zero separation, as they get together

they go over continuosly to an unstable bound state of an extremal singular Kaluza-Klein

black hole. We also find that, for B-fields larger than a critical value, or sufficiently large

thermal excitation, the D0 and D6 branes form stable bound states. The bound states with

thermally excited D0 branes are black rings in Taub-NUT, and we provide an analysis of

their phase diagram.
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1. Introduction and summary

Recently there has been great progress in advancing techniques to construct and analyze

solutions for higher-dimensional black holes [1 – 3]. These black holes allow for non-spherical

topologies as well as extended horizons, and can often be related to self-gravitating D-brane

configurations. The progress has mainly come from two different lines:

(i) five-dimensional vacuum solution-generating techniques have yielded many qualita-

tively new solutions describing black rings and black holes [4 – 13];

(ii) approximate methods have allowed to construct and analyze thin black rings in a

larger variety of backgrounds and dimensions [14, 15].

In this paper we bring to bear, and at some points refine and extend, these techniques

to analyze black rings in backgrounds of Taub-NUT type. Such solutions describe, when

embedded in M-theory and then reduced to IIA theory, D0-branes in the presence of D6-

branes. The self-gravitating D6-brane is essentially a Kaluza-Klein (KK) monopole plus six

additional space dimensions of M-theory, while the D0 brane uplifts to a momentum wave

of gravitons along the eleventh direction. When the D0 is excited thermally, this graviton

wave develops a horizon and becomes a boosted black string — conversely, when the boost

becomes light-like and the horizon shrinks to zero, we recover the gravitational description

of a D0 brane in its supersymmetric ground state. In the Taub-NUT background, where the

eleven-dimensional direction is contractible, the black string is actually a black ring. So,

quite generally, arrangements of D0 and D6 branes are described in supergravity as black

rings in Taub-NUT. As four-dimensional solutions, they describe a (singular) magnetic

monopole and an electrically charged black hole. The KK magnetic and electric charges,

P and Q, are related to the numbers N6 and N0 of D6 and D0 branes through the length

of the compact Kaluza-Klein circles near asymptotic infinity, 2πL,

P =
LN6

4
, Q =

2G4N0

L
. (1.1)

For the most part we will consider for simplicity a single D6 brane, N6 = 1. Configurations

of this sort have been constructed in the supersymmetric case in [16 – 18]. Our aim is to

study the much more complex non-supersymmetric D0-D6 systems.

The D0-D6 system presents a number of peculiar features. The long-distance D0-D6

interaction, mediated by NSNS gravi-dilaton and RR gauge-field closed-string exchange,

is repulsive. This admits a simple interpretation in M-theory, where the effect is simply

the centrifugal force created by the rotation of a ring with light-like local boost. It must

be noted, though, that despite this long-distance repulsion, D0 branes can bind to the

worldvolume of D6 branes to form non-supersymmetric metastable bound states [19] which,
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at strong coupling, can be precisely matched to Kaluza-Klein black holes with non-zero

Bekenstein-Hawking entropy [20 – 23].

It is known that the physics of D0-D6 interactions becomes richer when B-form fluxes,

introduced as moduli, are turned on in the worldvolume of the D6 [24 – 26]. When the fluxes

are large enough (more precisely, when a codimension-1 wall is crossed in the moduli space

of B-fields) it is possible to have supersymmetric bound states of D0 and D6 [24, 26], where

the D0 is at a finite distance from the D6. But we can envisage another way of achieving

equilibrium between a set of D0 branes and a D6 brane (without B-fields). If we add some

energy of excitation to the D0 branes while keeping their charge fixed, we enhance the

gravitational attraction to the D6 brane, which may then overcome their repulsion. When

the excitations of the D0 branes (i.e., of the open strings stretched between a gas of D0s)

have a thermal distribution, then in the regime of validity of supergravity they are described

as D0-charged black holes. Thus, if the horizon area of the D0-charged black hole is large

enough, a non-supersymmetric bound state may be possible. A main aim of this paper is

to demonstrate these two mechanisms using the novel gravity techniques mentioned above.

Finding equilibrium configurations is not the only information we can obtain from our

methods: we can also study their stability and their interaction energy. In constrast to the

techniques based on solving Killing spinor equations, we can construct configurations in

which the separation R between D0 and D6 branes does not correspond to equilibrium (so

supersymmetry is broken). We compute the interaction energy as the difference between

the total ADM energy of the system, as measured at infinity, and the masses of the D0

and D6 branes when they are isolated from each other,

Eint(R) = Mtot(R) −MD0 −MD6 . (1.2)

The D0-D6 separation in equilibrium states corresponds to extrema of this energy for fixed

charges and horizon area, essentially as a consequence of the first law. Stable configurations

should correspond to minima. When the D0s are not excited and so have zero entropy,

MD0 is simply determined by its charge (i.e., net number of D0 branes). When the D0s

are thermally excited, we take MD0 to be the mass of a D0-charged black hole with fixed

values of the charge and area (entropy). Thus Eint measures the interaction energy as

the thermally-excited D0 branes are moved adiabatically towards the D6 brane.1 For the

perturbative solutions a convenient alternative way to determine the stability is to analyze

the external force needed to balance the configurations away from equilibrium— a potential

associated to this force can also be constructed, which is closely related to Eint.

Our main results are:

1. In the absence of B-fields, the closed-string interaction between the D0 and D6 at any

finite separation is repulsive. However, the interaction energy goes continuously to a

finite maximum as the distance between the D0 and the D6 decreases to zero. We

construct a family of exact solutions that in this limit describe the formation of an

1Alternatively, we could fix the energy of the D0s, in which case the configuration of stable equilibrium

would be that which maximizes the entropy. The results are in both cases essentially the same, and for

definitiness we choose the fix the area in order to determine MD0.
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unstable D0-D6 bound state corresponding to an extremal (singular) Kaluza-Klein

black hole with angular momentum J = PQ/G4 and mass

Mbh = Eint +MD0 +MD6 . (1.3)

See figure 1. To obtain this result it is crucial to work with the exact solutions:

perturbative calculations break down as the D0 and D6 get together, since they give

Eint → ∞.

2. When B-fields are turned on in the D6 worldvolume, the interaction is again repulsive

below a critical value Bc, but for B ≥ Bc = L/2
√

3 a stable minimum develops. The

equilibrium solutions we find, using an approximate construction of thin black rings,

reproduce precisely previous results based on rather different, supersymmetry-based,

techniques. Our methods also provide the off-shell interaction energy and thus a

simple way to check the stability of these configurations. See figure 2.

3. Thermally excited D0-branes, even in the absence of B-fluxes, can achieve equilibrium

configurations in the presence of D6 branes if the entropy of the D0-brane thermal

gas is larger than a critical value

S > Sc = 8
√

2πN2
0

G4

L2
, (1.4)

or equivalently, if the mass of the excited D0s is

M > Mc =
3√
2

N0

L
. (1.5)

These are proper black rings in Taub-NUT space, in the sense that they have regular

horizons of finite area. Again, we construct both exact and perturbative solutions for

such systems. For the perturbative solutions we obtain Eint, which allows to argue

the stability of the bound states under changes in the distance between the D0 and

D6, see figure 3. The exact solutions that we construct are only a subfamily of the

most general class of exact solutions for black rings in Taub-NUT, since we cannot

vary independently the S1 and S2 angular momenta of the black ring.

Point 1 above deserves further comment. As we have mentioned, ref. [19] described how

D0 branes can bind to the worldvolume of D6 branes and form quadratically (meta-)stable

bound states. The construction in [19] did not include any angular momentum. However,

one expects that angular momentum can be added in the form of fermionic excitations of

the 0-6 open strings. When these fill up to the Fermi level, the configuration will have

angular momentum J = N0N6/2, and vanishing macroscopic entropy. This is precisely like

in the extremal Kaluza-Klein black hole with J = PQ/G4. Our result (1.3) amounts to an

exact computation of the mass of this bound state by taking into account the energy of

closed-string interaction stored in the bound state as N0 D0 branes are moved towards N6

D6 branes.2 Moreover, the fact that the exact interaction energy reaches a maximum that

2Observe that given our definition (1.2) and that Mbh is also an ADM mass, what makes this result

non-trivial is that the black hole solution can be reached continuously from the solutions for separate D0

and D6 branes.
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Figure 1: D0-D6 interaction energy Eint (with no B-field and at zero temperature) as a function of

separation R, for Q/P = .1 (thin), 1. (thick) and 10 (thicker). The interaction energy is normalized

relative to the one of the (singular) extremal black hole with the same electric and magnetic charges,

and angular momentum G4J = PQ. Here Eint is computed using the exact solutions of section 5.

10 20 30 40
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Figure 2: D0-D6 interaction potential with flux B = bL/2 versus R, for b = 1/9 (dashed),

bc = 1/
√

3 (thin solid) and .8 (thick solid). The interaction energy is normalized with the electric

charge so it corresponds to a fixed net number of D0 branes. The potential is obtained from the

perturbative extremal solutions of section 3.

accounts precisely for the mass of the black hole strongly suggests that, for this limiting

value of the angular momentum, the state of the D0 branes in the worldvolume of the D6

brane with J = N0N6/2 is not a metastable minimum as the one with J = 0 in [19]3 but

is actually an unstable maximum. It would be interesting to derive this result from an

analysis of the D6 worldvolume gauge theory.

Regarding point 3, we remark that the entropy and mass of the thermal D0s will not

only be bounded below for given N0, but they will also be bounded above. This is, if the D0

branes become too massive, the repulsive effect between D0 and D6 charges will be over-

whelmed by the attraction between their masses. In terms of black rings, this corresponds

to the fact that the mass and area of a black ring with a given spin along the S1 are bounded

above, the upper values corresponding to the solutions where the thin and fat branches of

black rings meet. This regime is away from our perturbative techniques, and we cannot

obtain the precise dependence of these upper bounds on N0. For very small D0 charge,

3Whose local potential is created by open string interactions.
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Figure 3: Thermal D0-D6 interaction potential versusR, for fixed values of the entropy and charge,

G4S/(4πQ
2) = .1 (dashed), critical 1/

√
2 (thin solid) and 3. (thick solid). The interaction energy is

normalized with the electric charge. The potential is obtained from the perturbative non-extremal

solutions of section 3 with b = 0.

however, the values can be approximately obtained from the asymptotically flat case,

S ≤ 4π

3
√

3
N0 , M ≤

(

N0√
2G4L

)2/3

(G4M ≪ L) . (1.6)

The paper is structured as follows: section 2 develops the general technique for approx-

imate perturbative solutions of thin black rings. Here we follow and expand on [14, 15].

In section 3 this technique is applied to put D0 branes in the background of a D6 brane,

possibly with B fluxes on the D6 and finite temperature on the D0s. This yields the equi-

librium configurations discussed in points 2 and 3 above and the results for the interaction

energy plotted in figures 2 and 3. Section 4 describes the exact solution-generating method

(following [10, 12]) and then proceeds to generate the basic solution for a black ring in

Taub-NUT. In section 5 we particularize to extremal D0 branes, and compute the interac-

tion energy presented in figure 1. We also exhibit the limit, discussed in point 1 above, to

an extremal KK black hole as the separation between the D0 and D6 vanishes. Section 6

studies a family of exact black rings in Taub-NUT, and discusses their phase diagram. We

conclude in section 7.

Note added. H. Yavartanoo has informed us of the paper [27], which deals with re-

lated issues.

2. Perturbative approach to thin rings: general method

The first approach is based on the method developed in [14] for a systematic perturbative

construction of thin black rings in a background that possesses a U(1) isometry. The ring

lies along an orbit of the isometry, and at the zero-th order level of approximation that we

work on in this paper, its backreaction on the geometry will be neglected.

The method requires the existence of two widely separated scales, one of which is the

ring’s S2-thickness, r0, and the other one is a large scale R ≫ r0 that is typically either a

measure of the ring’s radius or a characteristic length scale of the background — whichever

– 6 –
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of the two is smaller. The method allows to determine readily the range of validity of the

approximation. At scales much larger than r0, we can obtain the linearized field created

by the ring by substituting it with a distributional source of energy-momentum Tµν .

Ref. [28] showed that when a brane with distributional energy momentum T µν and

worldvolume spanning a submanifold of extrinsic curvature tensor Kµν
σ, is subject to an

external force density Fσ along a direction transverse to its worldvolume, then it must

satisfy the equations of motion

Fσ = T µνKµν
σ . (2.1)

In the absence of external forces, Fσ = 0, this equation imposes a constraint on the sources

one can place in a given curved submanifold. In the case of a ring, the circle where the

ring lies typically has non-zero extrinsinc curvature, so the equation

T µνKµν
σ = 0 (2.2)

determines the value of the rotation (locally a boost) for which the centripetal ring ten-

sion and the centrifugal repulsion balance each other — recall that the gravitational self-

interaction of the ring is neglected in this approximation.

By analyzing how this force changes as we change the ring radius, we obtain information

about the radial stability of a ring. If to increase the ring radius we need to apply an

outward-pushing force, then the ring will be radially stable. If instead we have to push

inward to keep the ring in a sligthly larger radius, the equilibrium will be unstable [29].4

The same information can be put in a perhaps more convenient way if we first integrate

the force (2.1) along the ring’s radial direction, to obtain a potential for the ring in this

background. The two situations described above then correspond to minima and maxima

of this potential.

2.1 Local analysis

We take the isometry of the background along which the ring lies as being parametrized by

a coordinate z. The location of the ring can be conveniently specified as the zero of some

coordinate ρ measuring radial distance transverse to the circle. Then, close to ρ = 0 we can

always write the background geometry, to lowest order in ρ/R, as flat space in the form

ds2 = −dτ2 + dz2 + dρ2 + ρ2(dϑ2 + sin2 ϑdφ2) +O(ρ/R) . (2.3)

In this background, we place a distributional source of energy-momentum that reproduces

the asymptotic field created by a black string in a flat space background. For a boosted

black string, this is

Tττ =
r0

16πG5

(

cosh2 α+ 1
)

δ(3)(ρ) ,

Tτz =
r0

16πG5
coshα sinhα δ(3)(ρ) , (2.4)

Tzz =
r0

16πG5

(

sinh2 α− 1
)

δ(3)(ρ) .

4Bear in mind that the force depends on the radius through the geometry, Kµν
σ, but also possibly

through the ring’s parameters in Tµν , since typically we will want to keep a physical parameter (such as

mass, charge, or area) fixed as the radius is varied.
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One case of particular interest is the extremal limit in which the boost becomes light-like,

α→ ∞ with r0 cosh2 α = p finite,

Tττ = Tτz = Tzz =
p

16πG5
δ(3)(ρ) . (2.5)

Since Tτz gives the momentum carried by the string along z, and we assume that z is

a periodic coordinate, z ∼ z + ∆z, in a quantum theory the parameters will be quantized,

r0
8πG5

coshα sinhα(∆z)2 = N0 , (2.6)

with integer N0. In the context of this paper, in which the direction along the string is

dimensionally reduced to obtain IIA solutions, the integer N0 typically corresponds to the

net number of D0 branes, and possibly a contribution to the (quantized) four-dimensional

angular momentum.

As mentioned above, the ring must satisfy the equations of motion (2.1). Since these

are local equations at the position of the ring, we can analyze them most easily and most

generally by considering the spacetime geometry close to the ring. The extrinsic curvature

of the ring’s circle is a O(1/R) effect, and thus to account for it we must go beyond the

zero-th order background (2.3) and include corrections to first order in ρ/R. A wide class

of backgrounds are covered by considering corrections of the form

ds2 = −
(

1 + Cττ
2ρ cos ϑ

R

)

dτ2 +

(

1 + Czz
2ρ cos ϑ

R

)

dz2 + 2Cτz
2ρ cos ϑ

R
dτdz

+2Cτφ
2ρ sin ϑ

R
ρ sinϑdφdτ + 2Czφ

2ρ sinϑ

R
ρ sinϑdφdz

+

(

1 + Cρρ
2ρ cos ϑ

R

)

(

dρ2 + ρ2dϑ2 + ρ2 sin2 ϑdφ2
)

+O(ρ2/R2) , (2.7)

where Cµν are constants that are determined by the specific embedding of the circle in the

background. The Riemann tensor of this geometry actually vanishes up to terms O(R−2).

Relative to the analysis in [14], we have added new crossed terms Cτφ and Czφ which

can appear at the same order. Eq. (2.7) describes the most generic class of backgrounds

deformed by S2-dipole perturbations that preserve the isometries generated by ∂τ , ∂z and

∂φ. The value of Cρρ can be adjusted at will by an appropriate gauge choice.

In this background, we place a black string of thickness r0, which will modify the

geometry (2.7) at distances ρ ∼ r0. Thus the approximations we use will be valid as long as

r0 ≪ min

(

R,
R

|Cµν |

)

. (2.8)

Eq. (2.1) can be readily evaluated in (2.7), since in this case the extrinsic curvature

is simply

Kµνσ = −1

2
∂σgµν (2.9)

where µ, ν are parallel to the string (τ and z) and σ is perpendicular. Since, to first order

in ρ/R the only coordinate dependence is of dipole type we only have derivatives of the

– 8 –
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dipolar contribution, ρ cos ϑ, which evaluated at the location of the string (ρ = 0, ϑ = 0)

are purely radial and along the plane in which the ring is curved,

F =
1

R
(CττTττ + 2CτzTτz − CzzTzz) dρ . (2.10)

An equilibrium configuration is one for which

CττTττ + 2CτzTτz = CzzTzz . (2.11)

In the particular case in which the string is boosted to the speed of light, (2.5), this re-

duces to

Cττ + 2Cτz = Czz . (2.12)

It is easy to check that this is the same as the equation that determines the null geodesics

in (2.7) on the plane ϑ = 0 and at fixed radius ρ→ 0. In this case the results are equivalent

to more conventional massless probe calculations. But to include non-extremal cases we

must resort to the more general approach described above.

2.2 Physical magnitudes

We assume the existence of two commuting Killing vectors that correspond to the

canonically-normalized generators of time translation, ζ, and spatial U(1) isometry at

infinity, χ. These are related by linear combination to the Killing vectors ∂τ and ∂z in the

region close to the ring,5

∂τ = a0ζ + b0χ ,

∂z = b1χ . (2.13)

The coefficients ai, bi, reflect the possible redshift between the vicinity of the ring and

asymptotic infinity, as well as possible rotations and twists between these two regions.

The quantities conjugate to these Killing vectors are obtained through integrals of the

stress-energy tensor on a spacelike surface Σ with normal nµ and volume element dV . The

mass is conjugate to ζ, so we define

M =

∫

Σ
dV Tµνn

µζν , (2.14)

and the momentum conjugate to the U(1) isometry

J =

∫

Σ
dV Tµνn

µχν (2.15)

(often this is an angular momentum, but in some instances it is better regarded as linear

momentum or electric charge). We can readily obtain the surface gravity and horizon

5Note that ζ cannot appear in the relation between χ and ∂z unless we introduce closed timelike curves.

Also, in principle other isometries, such as ∂φ, may mix: the discussion below can be easily modified to

accommodate this.
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velocity associated to ζ and χ from knowledge of the surface gravity and velocity for ∂τ
and ∂z. The Killing generator of the horizon is

ξ̂ = ∂τ + tanhα∂z = a0ξ (2.16)

where

ξ = ζ +
b0 + b1 tanhα

a0
χ (2.17)

is the horizon generator in terms of the canonical asymptotic symmetry generators ζ and

χ. Thus the horizon velocity relative to infinity is

ΩH =
b0 + b1 tanhα

a0
. (2.18)

The surface gravity associated to ξ̂ is

κ̂ =
1

2r0 coshα
(2.19)

and so the surface gravity measured by asymptotic observers that follow orbits of ξ is

κ =
1

2a0r0 coshα
. (2.20)

Finally, the horizon area is computed as the area of the boosted black string,

A5 = 4πr20∆z coshα . (2.21)

In all examples considered so far, these magnitudes are seen to satisfy a first law

dM =
κ

8πG5
dA5 + ΩHdJ (2.22)

for variations among stationary solutions when, and only when, the equilibrium condi-

tions are satisfied. We believe this should be generic, and provides a justification for the

definitions (2.14) and (2.15).

3. D0-D6 interaction: perturbative methods

We now apply the methods of section 2 to study the interaction between D0 and D6 branes

in the supergravity approximation. In the absence of other charges, fluxes, or excitations,

D0 and D6 branes repel each other. This should be reflected in the non-existence of a

supergravity solution that describes them in equilibrium. More precisely, a solution in

which the D0 and D6 remain static at a finite distance from each other must contain

external forces holding them in place.

However, we expect two ways in which D0 and D6 branes may form bound states at

finite separation. The first one has been studied in some detail in the past: a D0 and a D6

brane can form a supersymmetric configuration if an appropriate B-field is turned on in

the worldvolume of the D6. When the B-field, which is a modulus, is above a critical value

Bc, a bound state between the D0 and D6 appears [24, 26]. A way to understand this effect
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is by observing that the B-field on the D6 worldvolume induces, through the worldvolume

Chern-Simons coupling, Ramond-Ramond fields giving rise to D0, D2, D4 charges. The D2

branes have an attractive effect on the D0, and if the B-field is large enough this attraction

may compensate the D6 repulsion. We will be able to study the interaction energy and

make explicit how, as the B-field modulus is varied, the potential changes from having no

minimum when B < Bc, to developing one for B > Bc.
6

A second way in which D0 and D6 branes can be expected to overcome their repulsion

is by turning on excitations that increase their gravitational attraction. For simplicity we

will only consider thermal excitations of the D0 brane, but in principle it is also possible

(and not much more difficult) to excite the D6 brane. Thus we consider a gas of D0 branes

with open strings stretching among them in a thermal ensemble. At weak coupling and low

energies, this is described by Super-Yang-Mills quantum mechanics at finite temperature,

and at higher energies in terms of long excited strings with endpoints on the D0 branes.

At strong coupling the description is in terms of a black hole with D0 charge, which in

M-theory terms is a black string boosted along the eleventh direction. In the presence of

a D6 brane, this becomes a black ring in Taub-NUT.

As in the rest of the paper, we shall take the, more geometrical, M-theory point

of view on the system, and thus consider the D0-brane uplifted to M-theory. In a probe

approximation, the D0 brane is usually studied as a massless particle moving in a geometry

with the structure of a Taub-NUT geometry. However, as discussed at the end of section 2.1,

in order to include also thermal excitations of the D0 brane we must resort to the thin

black ring approach developed above.

3.1 Background D6 with B-flux

The background in which we place the D0 brane is that of a D6-brane wrapped on T 6

with a Bab field along its worldvolume directions. For simplicity we shall consider the most

symmetric configuration where B12 = B34 = B56, and with a single D6 brane. The con-

struction of the solution, uplifted to M-theory and reduced on T 6 down to five dimensions,

is detailed in appendix A. For the purpose of studying the black ring (i.e., the M-uplifted

D0 brane) in this background, we shall only need the five-dimensional background metric

ds2 = −Z−2 [dt+ ω0 (dψ + (cos θ − 1)dφ)]2

+
Z

H
(dψ + (cos θ − 1)dφ)2 + ZH(dr2 + r2dθ2 + r2 sin2 θdφ2) (3.1)

with ψ ∼ ψ + 4π, and where

H = h+
1

r
, Z = hq +

h2
p

H
, (3.2)

and

ω0 =
3hp hq

2H
+
h3
p

H2
. (3.3)

6A threshold case with B = Bc was studied in [30].
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The moduli at infinity h, hp, hq are given by the asymptotic Kaluza-Klein radius L and

the B-field, which we express in terms of a dimensionless parameter b as B = bL/2

h =
2

L

1 − 3b2

(1 + b2)3/2
, hp =

2b√
1 + b2

, hq =
L

2

√

1 + b2 . (3.4)

When the B-field vanishes, b = 0, we recover the conventional Kaluza-Klein monopole

background, with

H =
2

L
+

1

r
, Z =

L

2
, ω0 = 0 (b = 0) . (3.5)

It is well known that this geometry is smooth at the core of the KK monopole (r = 0).

The same is true for generic values of b. The moduli induce D0-D2-D4 charges, but these

do not grow a horizon around the nut (which would require charges not induced by the

B-field), nor create a singularity.

We now apply the methods of section 2 to this background. First we need the form of

the geometry near the location of the ring, which we take to be the circle at

r = R , θ = 0 (3.6)

extended along ψ. Let us denote

HR ≡ H(r = R) , ZR ≡ Z(r = R) , ωR ≡ ω0(r = R) . (3.7)

The proper circumferential length of the circle is

∆z =

∫

dψ
√
gψψ |r=R,θ=0 = 2πL

√

2R
(

(1 + b2)3/2L+ 2R
)

√
1 + b2L+ 2R

. (3.8)

As the distance between the ring and the nut grows, R → ∞, this becomes equal to the

asymptotic KK circle length

∆z → 2πL . (3.9)

Observe that R is not the proper radial distance between the ring and the nut but only a

coordinate distance associated to the conventional cooodinate r in (3.1). However, we will

continue to use it as a simple and convenient measure of the separation between the D0

and D6 brane.

In order to focus on the region around the circle (3.6), we change to adapted coordinates

(r, θ) → (ρ, ϑ)

r sin θ =
ρ√

HRZR
sinϑ, r cos θ = R+

ρ√
HRZR

cosϑ (3.10)

such that the ring circle (3.6) now lies at ρ = 0, and then expand the metric in powers of

ρ/R. To bring the metric into the form (2.3) to zero-th order in ρ/R, we have to perform

two further coordinates changes: first, change to corotating coordinates, and then rescale

time to canonical normalization and ψ to proper length along the string direction,

t =
∆z

4π

√

ZRHR τ, ψ =
4π

∆z

(

z +

√

HR

Z3
R

ωR τ

)

. (3.11)
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Now the metric to first order in ρ/R takes the form (2.7), with

Cττ =
Lb2

(1 + b2)3/2L+ 2R

√

√

√

√

2(1 + b2)R3

(√
1 + b2L+ 2R

)3

Cτz =
2b3LR2

(√
1 + b2L+ 2R

)2 (
(1 + b2)3/2L+ 2R

)

Czz =
L
(

(1 + b2)3/2L+ 2(1 − b2)R
)

(1 + b2)3/2L+ 2R

√

√

√

√

(1 + b2)R

2
(√

1 + b2L+ 2R
)3

Cρρ = − L

√

√

√

√

(1 + b2)R

2
(√

1 + b2L+ 2R
)3

Czφ = −
L
√

2R
(

(1 + b2)3/2L+ 2R
)

4
(√

1 + b2L+ 2R
)2 ,

(3.12)

and Cτφ = 0.

The thin ring approximation is valid when (2.8) holds. When b = 0 this condition is

always parametrically equivalent to simply

r0 ≪ R . (3.13)

Observe that when the ring is far from the nut, R≫ L, the approximation is also valid for

r0 > L: in this regime, in which the black ring is very well approximated by a wrapped

black string, the thickness r0 is only limited by the requirement that the ring remains away

from the nut. The ring thickness itself can be much larger than the KK radius. This also

remains valid with non-zero b, since a large B-field b ≫ 1 tends to make the coefficients

Cµν smaller.

3.2 Physical parameters

We need to know how the parameters r0 and α relate to the number, mass and entropy

of D0 branes. To find this we need the relation between the Killing generators ∂τ , ∂z in

the region near the ring, and the canonical generators χ of the asymptotic compact circles

with period 2πL, and ζ of asymptotic time translations.

To this effect (see [16]), we first note that the metric at asymptotic infinity becomes

ds2 → L2

4
(dψ + (cos θ − 1)dφ −̟dt̄)2 − dt̄2 + dr2 + r2dθ2 + r2 sin2 θdφ2 (3.14)

where t̄ = 2t/L is the canonically normalized time and

̟ =
2

L

b(3 − b2)

(1 + b2)3/2
(3.15)
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is the velocity dψ/dt̄ of the asymptotic frames. We now change

ψ =
2

L
y +̟t̄+ φ̄ , φ = φ̄ (3.16)

in order to go to the canonical asymptotic form for the KK vacuum in its rest frame,

ds2 →
(

dy +
L

2
cos θ dφ̄

)2

− dt̄2 + dr2 + r2dθ2 + r2 sin2 θdφ̄2 (3.17)

with y ∼ y + 2πL.

The timelike Killing generator, ζ, of the orbits of static asymptotic observers is7

ζ =
∂

∂t̄
=
L

2

∂

∂t
+̟

∂

∂ψ
, (3.18)

the generator χ of the Kaluza-Klein circle is

χ =
∂

∂y
=

2

L

∂

∂ψ
, (3.19)

and the angular rotations along φ̄ are generated by

∂

∂φ̄
=

∂

∂φ
+

∂

∂ψ
. (3.20)

Now, since eq. (3.11) gives

∂

∂ψ
=

∆z

4π

∂

∂z
,

∂

∂t
=

4π

∆z

1√
HRZR

(

∂

∂τ
−
√

HR

Z3
R

ωR
∂

∂z

)

, (3.21)

then together with (3.18) and (3.19) we obtain the relations we sought.

We can now compute the physical magnitudes following the analysis in section 2.2.

We shall express them as four-dimensional quantities, taking into account that

G4 =
G5

2πL
. (3.22)

The magnetic charge comes entirely from the background D6 and is

P =
L

4
, (3.23)

and the 4D electric charge is proportional to the momentum along the compact direction,

Q = 2G4

∫

dzd3xTτµχ
µ = 2G4

N0

L
(3.24)

where N0 is given in (2.6).

7Note that ζ differs from the timelike Killing vector ∂t that is parallel to the supersymmetry generators

(i.e., constructed as a bilinear of Killing spinors).
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Since the black string has no angular momentum along φ, it follows from (3.20) that

the four-dimensional angular momentum associated to ∂φ̄ is given by the Dirac value

J =
QP

G4
. (3.25)

If we had we taken the black string to be a Kerr black string then J 6= QP
G4

— this is illus-

trated in appendix E. This is only possible when the D0 is excited, since in the limit α→ ∞
the S2 rotation must vanish to avoid pathologies, and so the Dirac relation must be satisfied.

The energy conjugate to time translations generated by ζ is

M =

∫

dzd3xTτµζ
µ =

Q

2G4

[

(

2πL

∆z

)2( 1√
HRZR

cosh2 α+ 1

sinhα coshα
− ωR
Z2
R

)

+
L̟

2

]

. (3.26)

The four-dimensional Einstein-frame area is

A4 =
∆z

2πL
4πr20 coshα , (3.27)

consistently with the invariance of the entropy under dimensional reduction. When the

ring is non-extremal and α is finite, we can express the area for a given electric charge (i.e.,

the entropy for a given net number of D0s) as

A4

16πQ2
=

1

sinh2 α coshα

(

2πL

∆z

)3

, (3.28)

where ∆z is given in (3.8).

3.3 Equilibrium configurations

Equilibrium configurations correspond to solutions of (2.11). For a black ring (2.4)

this requires

(cosh2 α+ 1)Cττ + 2Cτz coshα sinhα = Czz(sinh2 α− 1) (3.29)

with Cµν given by (3.12). There are two simple situations of particular interest:

Extremal ring with B 6= 0. When the ring is boosted to the speed of light, α→ ∞ —so

it is extremal and chiral, corresponding to a D0 brane in its ground state— the equilibrium

equation (2.12) is solved for

R =
L

2

(1 + b2)3/2

3b2 − 1
. (3.30)

Thus, equilibria between D0 and D6 branes are possible for

b > bc =
1√
3
. (3.31)

In appendix B we compare the result (3.30) with the one obtained from the exact supergrav-

ity solution, and show perfect agreement when the D0 branes are treated perturbatively.

The critical value of the field (3.31) also agrees with the value computed in perturbative

string theory [26, 24].
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Non-extremal ring with B = 0. When the D0 branes are thermally excited the boost

α is finite. In this case we can look for equilibrium configurations even when no B flux

is present, b = 0. This simplifies greatly the background, since Cττ = Cτz = 0 and the

equilibrium condition fixes the boost value to

sinh2 α = 1 . (3.32)

In this case, we can write (3.28) (with b = 0 in (3.8)) as

R =
L

2

[( A4

8
√

2πQ2

)2/3

− 1

]−1

(3.33)

which implies that, for a fixed net number of D0 branes (fixed Q), a bound state can exist

if the thermal excitation is large enough to create a horizon of area

A4 > A4,c = 8
√

2πQ2 , (3.34)

or in terms of entropy and D0 number,

S > Sc = 8
√

2πG4
N2

0

L2
. (3.35)

It is important to observe that, even if we have derived this result using the perturbative

method for thin rings, the result (3.35) is actually exactly valid, since it is the value of the

entropy for a black ring bound at an infinite distance from the nut, in which case (3.13)

does not impose any constraint on the ring thickness.

For b = 0 and equilibrium boost (3.32), the expressions for the physical parameters

take simple forms,

G4M

Q
=

3

2
√

2

(

2πL

∆z

)

,
A4

(G4M)2
=

64
√

2π

9

(

2πL

∆z

)

. (3.36)

Since ∆z ≤ 2πL, with saturation when the separation goes to infinity, we see that not only

the area, but also the mass has a lower limit

M > Mc =
3

2
√

2

Q

G4
=

3√
2

N0

L
(3.37)

for the bound state to exist.

Thus we have demonstrated the two main mechanisms that permit the formation of

bound states of D0 and D6 branes. The general case in which the two are simultaneously

at work, i.e., when both b and r0 are finite, is only technically more difficult and not more

illuminating, so we will not dwell on it.

3.4 Forces, interaction energy, and stability

In a general configuration away from equilibrium, an external force F is needed in order to

keep the D0 branes in place, which acts at each point along the ring. Thus the ring exerts
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a force −F , and we can assign to it a potential energy dVF =
√−gtt ∆z F , redshifted from

the location of the ring to asymptotic infinity. Thus we introduce

VF (R) = −
∫ ∞

R

√−gtt ∆z F . (3.38)

Clearly, equilibrium corresponds to V ′
F = 0.

There is another measure of the energy of the interaction, given by shift in the internal

energy of the D0-branes when placed in the field created by the D6 brane — the D6 is not

affected since we are regarding it as a background. This shift is the difference between the

measured mass M of the D0s in the presence of the D6 and their mass in isolation,

∆M(R) = M(R) −MD0 . (3.39)

By the mass of isolated D0s we mean the mass of a D0-charged black hole of given charge

and area. Then ∆M measures the change in its internal energy as it is moved adiabatically

from infinity to R. When the D0 is extremal, its mass in isolation is simply Q/(2G4). We

mentioned above that the mass is extremized for configurations that satisfy the no-force

condition. Thus, the extrema of ∆M coincide with the extrema of VF .

In principle ∆M and VF seem to be different contributions to the total interaction

energy, and we might expect that the quantity that corresponds to Eint in (1.2), which we

use for exact solutions, is the sum of both. In fact we have checked explicitly that, at large

distances, the value of Eint for the exact solutions coincides with that of ∆M + VF .

On the other hand, not only do the minima of ∆M and VF coincide, but the two

functions also resemble each other closely for generic b and r0, and in fact agree exactly

for b = 0. Whether adding up ∆M and VF is the correct procedure, or instead is double-

counting the interaction energy, is not completely clear to us,8 but fortunately none of

our conclusions depends on this, since the properties of the interaction energy remain

the same (up to possibly a factor close to 2) with either definition. The interaction energy

Eint = ∆M+VF for the two particular cases of interest discussed above has been presented

in figures 2 and 3. Here we discuss some of their properties at short and long distances.

If we consider first R→ 0 it is easy to see that in the extremal case at fixed charge, the

mass M in (3.26) diverges as 1/
√
R, and so does then, too, ∆M . Thus at short distances

we cannot expect our perturbative approximation to remain valid and we must resort to

solutions that account for backreaction of the D0. This is addressed in section 5.

At large distances the values of ∆M and VF are equal to leading order. Adding them

together to obtain the total interaction energy we find

G4Eint(R) = −
(

2b3 +
√

1 + b2
(2b2 − 1) sinh2 α∞ + b2 + 1

coshα∞ sinhα∞

)

QP

R
+O(R−2) , (3.40)

where α∞ is a function of Q2/A4, independent of b, determined as the solution of (3.28)

at R→ ∞, i.e., ∆z → 2πL,

sinh2 α∞ coshα∞ =
16πQ2

A4
. (3.41)

8The fact that this prescription would give a larger total mass to the system at equilibrium than MD6+M

points in this direction.
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Depending on the sign of the coefficient of QP/R the interaction energy will be re-

pulsive or attractive. This is in fact in line with the force analysis, since this coefficient

is proportional to the force F at R → ∞, and when it vanishes a bound state at infinity

appears. We can see this more explicitly in the two particular cases of interest. For the

extremal case, α∞ → ∞ (A4 → 0) the above expression simplifies to

G4Eint(r) =
1 − 3b2

2b3 −
√

1 + b2(2b2 − 1)

QP

R
+O(R−2) . (3.42)

This interaction energy changes from positive, hence repulsive, for b < 1/
√

3 to negative,

hence attractive, for b > 1/
√

3. The critical value bc = 1/
√

3 agrees with the expectation

that the long-distance perturbative string interaction changes sign at b = bc. At b = 0 it

becomes particularly simple,

G4Eint(R) =
QP

R
+O(R−2) . (3.43)

For the nonextremal ring with b = 0 we have

G4Eint(r) =
sinh2 α∞ − 1

coshα∞ sinhα∞

QP

R
+O(R−2) . (3.44)

We see that bound a state at infinity appears for sinh2 α∞ = 1 as expected, and that

the interaction becomes attractive when the ring at infinity is rotating more slowly,

sinh2 α∞ < 1: the centrifugal force at infinity is weaker so the ring will tend to shrink and

move towards the nut.

4. Exact solution-generating technique

In the case of five-dimensional stationary vacuum solutions with two U(1) isometries, one

can actually go beyond the perturbative approximation and construct exact geometries

by the application of a combination of solution-generating techniques. In particular, we

will use the method of [10] and [12] to generate an asymptotically Taub-NUT solution

starting from an asymptotically flat solution. This method is based on the application of

an appropriate element of the SL(3,R) group of symmetries, discovered in [33], that the

solutions to the Einstein vacuum equations with these isometries have. In this section,

after briefly recalling the solution generating technique that we employ, we will show how

to construct an exact solution corresponding to a black ring in Taub-NUT.

4.1 Review of the solution-generating method

The starting solution, that will be referred to as the “seed”, is a stationary axisymmetric

solution ([34]) in five dimensions:

ds2 = GIJdy
IdyJ + e2ν(dρ2 + dz2) , (4.1)

where yI , I = 0, 1, 2, are coordinates corresponding to Killing directions of the solution;

in our case yI = {t, φ̂, ψ̂}, with φ̂ and ψ̂ the Cartan angles of R
4 . Here the metric
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coefficients GIJ and e2ν only depend on the Weyl coordinates ρ and z. The SL(3,R)

transformation that relates asymptotically flat and Taub-NUT solutions acts naturally on

the Euler angles φ±:

ψ̂ =
1

2
(φ+ + φ−) , φ̂ =

1

2
(φ+ − φ−) . (4.2)

We will identify the fiber of Taub-NUT space with the direction φ+. Introducing

coordinates ξ0 ≡ t and ξ1 = ℓφ+, where ℓ is an arbitrary length scale, it is useful to rewrite

the metric (4.1) in the form

ds2 = λab(dξ
a + ωa)(dξb + ωb) +

1

τ
ds23 , (4.3)

where a, b = 0, 1, τ = − detλab and ωa = ωa−dφ− are one-forms on the base space ds23.

The three-dimensional metric ds23 on the base space is then given by

ds23 = τ e2ν(dρ2 + dz2) +
ρ2

4 τ
dφ2

− . (4.4)

Using the fact that in three dimensions a one-form is dual to a scalar, we can introduce

the potentials Va:

dVa = −τλab ∗3 dω
b , (4.5)

where the Hodge operation ∗3 is performed with the metric ds23. It can be shown that the

integrability condition of this equation is satisfied thanks to the Einstein equations. Then,

the data contained in the metric (4.3) can be re-packadged into the symmetric unimodular

matrix of scalars χ:

χ =

(

λab − VaVb

τ
Va

τ
Vb

τ − 1
τ

)

. (4.6)

The usefulness of this formalism relies on the fact that the equations of motion are left

invariant by the action of an SL(3,R) group of transformations that act linearly on χ:

χ→ χ′ = N χNT , ds23 → ds23 , N ∈ SL(3,R) . (4.7)

This provides a solution generating method: starting from a solution (χ, ds23), one can

construct a new solution (χ′, ds23) by acting on the former with suitable elements of SL(3,R).

Reconstruting the final metric from the rotated matrix χ′ requires inverting the duality

relations (4.5) in order to compute the transformed one-forms ω′a. As a computational trick

to facilitate this procedure, it is useful to introduce a matrix of one-forms κ, defined as

∗3dκ = χ−1dχ . (4.8)

One can show that κ encodes the information about the one-forms ωa since

ωa = −κa2 (a = 0, 1) . (4.9)

Moreover, the definition of κ implies that it also transforms linearly under SL(3,R):

κ→ κ′ = (N−1)T κNT , N ∈ SL(3,R) . (4.10)
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Therefore, by following the transformations of both χ and κ under SL(3,R), one can easily

reconstruct the transformed metric by purely algebraic manipulations. We will refer to

the set of data (χ, κ) as the Maison data.

In [10, 12] the element of SL(3,R) that maps five-dimensional asymptotically flat so-

lutions into asymptotically Taub-NUT solutions was identified. To construct a black ring

in Taub-NUT, one should, naively, apply this SL(3,R) transformation to the black ring

of [5]. However, as explained in [12], this does not quite work: the SL(3,R) transfor-

mations change the relative orientation of the rods which can spoil the regularity of the

solution. The application of an SL(3,R) transformation to a solution with a regular horizon

of topology S2 × S1 produces, in general, a solution with a singular horizon. To counter-

balance this effect, one should start from a singular seed solution that generalizes the flat

space black ring and contains an extra parameter encoding the relative orientation of the

space-like rods on either side of the horizon. This extra parameter is then fixed in such a

way that the SL(3,R)-transformed solution has a regular ring-like horizon.

The easiest way to produce the needed seed solution is to use the BZ [35] (see [36]

for a detailed review) technique to construct a one-parameter family of solutions that

generalizes the black ring of [5]. Given a solution generated by the BZ method, a series of

technical results derived in [12] allow to compute the corresponding χ and κ matrices. In

section 4.2 we will construct the appropriate seed and compute the associated Maison data.

The SL(3,R) transformation will be carried out in section 4.3, where we will also perform a

singularity analysis and determine the values of parameters for which the solution is regular.

4.2 Seed solution

In this section we construct the appropriate seed solution to which we will apply a suitable

SL(3,R) transformation that will eventually yield a black ring in Taub-NUT. The data

encoding the seed solution are the metric factors {GIJ , e2ν} defined in (4.1).

The metric. Our starting point is a Weyl solution given by

G0 = diag

{

−µ1

µ3
,
ρ2µ3

µ2µ4
,
µ2µ4

µ1

}

. (4.11)

The first term in G0 corresponds to the tt-component, the second to the φ̂φ̂-component

and the third to the ψ̂ψ̂-component. In additon, we have

e2ν0 = k2 µ2µ4(ρ
2 + µ1µ2)(ρ

2 + µ1µ3)(ρ
2 + µ1µ4)(ρ

2 + µ2µ3)(ρ
2 + µ3µ4)

µ1(ρ2 + µ2µ4)2
∏4
i=1(ρ

2 + µ2
i )

, (4.12)

with k > 0 without loss of generality. We use the standard notation

µi =
√

ρ2 + (z − ai)2 − (z − ai) , µ̄i = −ρ2/µi , i = 1 . . . 4 (4.13)

and we assume the ordering

a1 ≤ a2 ≤ a3 < a4 , (4.14)
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a1 a2 a3 a4

Figure 4: Rod structure of the initial solution (4.11). This is the same rod structure of the seed

solution of the standard S1-spinning ring.

of the rod endpoints. The initial solution (4.11)–(4.12) is singular by itself, but as explained

in [8], the singularity can be canceled after the soliton transformations by fixing the BZ

parameters conveniently.

We generate the wanted seed solution by means of a two-soliton transformation

on (4.11). We briefly summarize the steps of this construction:

1. Remove an anti-soliton at z = a1 and a soliton at z = a4 form (G0)tt and (G0)φ̂φ̂
respectively. The resulting metric is:

G1 = diag

{

ρ2

µ1µ3
,−µ3µ4

µ2
,
µ2µ4

µ1

}

. (4.15)

2. Rescale the metric by a factor of 1/µ4 to find

G̃0 =
1

µ4
G1 = diag

{

− µ̄3

µ1µ4
,−µ3

µ2
,
µ2

µ1

}

. (4.16)

This is the new seed solution to which we apply the BZ transformations. The corre-

sponding generating matrix is then given by

Ψ0 = diag

{

− (µ̄3 − λ)

(µ1 − λ)(µ4 − λ)
,− (µ3 − λ)

(µ2 − λ))
,
(µ2 − λ)

(µ1 − λ)

}

. (4.17)

3. Perform now a two-soliton transformation with G̃0 as seed, re-adding the anti-soliton

at z = a1 and the soliton at z = a4 with BZ vectors m
(1)
0 = (1, 0, b1), m

(4)
0 =

m(0, 1, b4) respectively. Denote the resulting solution by G̃.

4. Rescale G̃ to find the final metric:

G = µ4 G̃ . (4.18)

Note that by construction G satisfies detG = −ρ2.

The solution obtained at this stage has a naked singularity at z = a1, the position of

the negative density rod of the starting metric G0. This singularity can be removed by

fixing the BZ parameter b1 to be

|b1| =

√

2(a2 − a1)(a4 − a1)

(a3 − a1)
. (4.19)
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From now on we will only consider the solution with b1 fixed as above. The sign of

b1 is arbitrary and it can always be changed by changing ψ̂ → −ψ̂, which corresponds to

inverting the sense of rotation of the five-dimensional asymptotically flat solution. Without

loss of generality, we choose b1 > 0.

Parametrization. Having fixed b1, the resulting solution can be conveniently

parametrized so that its relation with the five-dimensional asymptotically flat black ring is

manifest. Following [8], we choose

a1 = −R2 2λ− ν(1 + λ)

2(1 − λ)
, a2 = −R

2

2
ν a3 =

R2

2
ν , a4 =

R2

2
. (4.20)

Notice that in this paramtrization b1 is given by

b1 = R

√

(1 + λ)(λ− ν)

λ(1 − λ)
. (4.21)

We find it convenient to change to the C-metric type of coordinates of [37], for which

ρ =
R2

(x− y)2

√

−G(x)G(y) , z =
R2(1 − xy)

[

1 + ν(x+ y)
]

(x− y)2
, (4.22)

where G(ξ) is defined below. Notice that, defining Ri =
√

ρ2 + a2
i , i = 2, 3, 4, we can invert

the relations above and write (x, y) in terms of (ρ, z):

x =
(1 − ν)R2 − (1 + ν)R3 − 2R4 +R2(1 − ν2)

(1 − ν)R2 + (1 + ν)R3 + 2νR4
, (4.23a)

y =
(1 − ν)R2 − (1 + ν)R3 − 2R4 −R2(1 − ν2)

(1 − ν)R2 + (1 + ν)R3 + 2νR4
. (4.23b)

Finally, rescaling b4 as b4 = b̄4(1+ν)2
√

1−λ
1+λ , we can write the metric (4.18) in a simple

looking form,9

ds2 = − H(y, x)

H(x, y)

[

dt+ Ω
]2

+
R2

(x−y)2
[

−F (y, x)

H(y, x)
dψ̂2+k2H(x, y)

(

− dy2

G(y)
+
dx2

G(x)

)

+
F (x, y)

H(y, x)
dφ̂2+

2J(x, y)

H(y, x)
dφ̂dψ̂

]

,

(4.24)

where

G(x) = (1 − x2)(1 + νx) , (4.25)

H(x, y) = 1 + λx− b̄24(1 + νx)2(1 + νy)
[

1 − λν − (λ− ν)y
]

, (4.26)

F (x, y) = G(x)(1 + λy) − b̄24G(y)(1 + νx)3
[

1 − λν − (λ− ν)x
]

, (4.27)

J(x, y) = −(1 + λ)b̄4 C2 (x− y)(1 + νx)(1 + νy)
[

x+ y + ν(1 + xy)
]

, (4.28)

9This metric is a particular case of the solution constructed in [38]. However at this stage we have not

imposed any condition on the parameters that determine the directions of the rods.
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and the rotation one-form Ω is given by

Ω =
RC1

H(y, x)

[

ωψ̂(x, y)dψ̂ + b̄4C2 ωφ̂(x, y)dφ̂
]

, (4.29)

with

ωψ̂(x, y) = 1 + y − b̄24(1 − ν)(1 − x)(1 + νx)(1 + νy)2 , (4.30)

ωφ̂(x, y) = (1 + νx)
[

x+ y + ν(1 + xy)
]

, (4.31)

and

C1 =

√

λ(λ− ν)
1 + λ

1 − λ
, C2 =

√

1 − λ

1 + λ
. (4.32)

Note that we have left the constant k in front of the conformal factor unspecified. We

will fix it later on when we consider the asymptotics of the final metric. Finally, the

dimensionless parameters λ and ν must lie in the range

0 < ν ≤ λ < 1 . (4.33)

The metric (4.24) is not written in a manifestly asymptotically flat form. Though

one could perform a change of coordinates to bring the metric in an asymptotically flat

frame, this is not needed for our construction. Furthermore, the solution (4.24) has closed

timelike curves due to the fact that the direction of the finite spacelike rod z ∈ [a3, a4], has a

component along t, which implies that t has to be globally identified with a certain period.

In fact, this corresponds to the presence of a Dirac-Misner string. As explained above, this

problem will be cured after the action of SL(3,R). Finally, we notice that setting b4 = 0,

or equivalently b̄4 = 0, the metric (4.24) reduces to the S1-spinning ring of [37].

To apply the SL(3,R) transformation that will generate the metric for a black ring

in Taub-NUT, one needs to compute the Maison data (χ, κ) for the metric (4.24). This

computation is rather involved and the interested reader can find it in appendix C.

4.3 Constructing the ring

To proceed with the construction of the solution, we examine first the rod structure [34]

of the seed solution (4.24). There are the following four rods: rod 1, at z ∈ (−∞,−R2

2 ν]

(or x = −1); rod 2, at z ∈ [−R2

2 ν,
R2

2 ν] (or y = − 1
ν ); rod 3, at z ∈ [R

2

2 ν,
R2

2 ] (or x = 1);

rod 4, at z ∈ [R
2

2 ,∞) (or y = −1). As shown in [10], the eigenvectors, vi (i = 1, . . . , 4),

associated to each rod can be easily derived from the matrix κ as

vi = lim
ρ→0

(κ02, κ12, 1)
∣

∣

∣

z∈Ii
, (4.34)

where Ii is the interval corresponding to the i-th rod, and we are writing the vectors in the

basis { ∂∂t , ∂
∂ξ1

, ∂
∂φ

−

}. This result holds whenever τ 6= 0, which is satisfied on every rod for

our seed solution.

The rod 2 is timelike and therefore corresponds to the horizon of the solution. In

order for the topology of this horizon be S2 × S1, it is necessary that its neighboring rods,
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namely rods 1 and 3, have the same direction, i.e. v1 = v3. One can check, using (4.34),

that our seed solution does not satisfy this requirement and hence it is not a black ring.10

As explained above, however, this feature of the seed solution is exactly what is needed to

produce a regular black ring in Taub-NUT: the application of a suitable SL(3,R) transfor-

mation will add KK-monopole charge and, at the same time, modify the relative orientation

of rods 1 and 3 in such a way that the final solution will satisfy v1 = v3. Let us see how

this works in some detail.

To add KK-monopole charge to an asymptotically flat solution, one should apply

to the seed solution the transformation D, where D is a particular element of SL(3,R)

(see below) [10]. However, the action of D generates unwanted Dirac-Misner strings. This

pathology can be canceled by further acting on the solution with an element in the SO(2, 1)

subgroup of SL(3,R) that preserves the asymptotic boundary conditions. There are three

such transformations, denoted as Nα, Nβ and Nγ in [20]. Nα is equivalent to a “boost”

in the ξ1 direction. Such a transformation does not change the relative orientation of the

rods, nor the periodicity of the angular coordinates and, for this reason, does not affect

the topology of the horizon. It has been shown in [10] that the action Nβ is equivalent

to a redefinition of the scale ℓ and hence, if one keeps ℓ as an arbitrary parameter, the

action of Nβ is superfluous. On the other hand, Nγ changes the regularity properties of

the geometry, and we will need to include its action to obtain the desired solution.

In a first step we obtain an asymptotically Taub-NUT solution by acting on the

seed (4.24) with D and Nγ . In terms of the Maison data (χ′, κ′), the new solution is

given by

χ′ = NγDχDTNT
γ , κ′ = NγDκDTNT

γ , (4.35)

where

D =







1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2






, Nγ =







cos γ 0 − sin γ

0 1 0

sin γ 0 cos γ






. (4.36)

The resulting metric has rods at the same positions as the seed metric but with different

orientations, which are determined by the parameters of the SL(3,R) transformation. The

eigenvectors corresponding to the rods 1 and 3 of the solution in (4.35) have the form

v′1 =
(

ℓ(c01 cos 2γ + s01 sin 2γ), ℓ(c11 cos γ + s11 sin γ), 1
)

,

v′3 =
(

ℓ(c03 cos 2γ + s03 sin 2γ + z0
3), ℓ(c13 cos γ + s13 sin γ), 1

)

, (4.37)

where cij , s
i
j and z0

3 are some functions of b4, λ, ν and the dimensionless ratio

R̂ ≡ R

ℓ
. (4.38)

We should require that v′1 = v′3 in order for the new solution be a black ring. The ξ1-

component of this equation fixes the angle γ in Nγ as

tan γ = − c
1
1 − c13
s11 − s13

. (4.39)

10Instead, this solution can be interpreted as black lens [38].
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Imposing the equality of the t-components of v′1 and v′3, and using the value of γ found

above, leads to the condition

(c01−c03)[(s11−s13)2− (c11−c13)2]−2(s01−s03)(c11−c13)(s11−s13)−z0
3 [(s11−s13)2 +(c11−c13)2] = 0 ,

(4.40)

which is an algebraic equation for b4. Solving this equation, and substituting the value of

b4 in (4.39), leaves as free parameters ℓ, R, ν and λ, which are the parameters one expects

for a black a ring in Taub-NUT with one independent angular momentum: ℓ sets the scale

of the KK circle, R is a measure of the radius of the ring, ν is a measure of the ratio

between the radii of S2 and S1 at the horizon, and λ controls the angular momentum in

the plane of the ring.

4.4 Balanced rings

In order to avoid a conical singularity at the location of a given rod, the period ∆i of the

spacelike coordinate φi(= a linear combination of φ+, φ−) vanishing there must be fixed as

∆i = 2π lim
ρ→0

√

ρ2g′ρρ
|v′i|2

for z ∈ Ii , (4.41)

where g′ρρ is the ρρ component of the metric determined by the Maison data (4.35), and

|v′i| is the norm of v′i. We find,

∆1 = ∆4 = 2π
k
∣

∣b4(1 + λ)(1 − ν)2 + (1 − λ)(1 + ν)2
∣

∣

(1 − λ)(1 + ν)2
, (4.42a)

∆3 = 2π
k |1 + b4|(1 − ν)

1 + ν

√

1 + λ

1 − λ
. (4.42b)

Since for a ring one has v′1 = v′3, one needs to impose ∆1 = ∆3 in order to cancel the

possible conical singularities. This condition can be solved for λ, and one finds that there

are two solutions

λ =
2ν

1 + ν2
, (4.43)

λ =
(1 + ν)2 − b24(1 − ν)2

(1 + ν)2 + b24(1 − ν)2
. (4.44)

It can be checked that for the value of λ given in (4.44) the rod structure of the solution

degenerates: the eigenvector of the semi-infinite rod, v′1, becomes parallel to the eigenvector

of the other semi-infinite rod, v′4. This is the rod structure of a solution which has R
3,1×S1

asymptotics, rather than Taub-NUT, and we can thus discard this solution. The require-

ment of absence of conical singularities, then uniquely fixes λ to take the value (4.43),

which is the same value one finds for the S1-rotating black ring in flat space. Notice this

coincides with the perturbative analysis of section 3. This is the case we will consider in

the following.
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Restricting to balanced rings also simplifies the expressions considerably. Choosing,11

k =
2

|1 + b4|
(4.45)

the periodicities of the angular directions become

∆φ− = ∆φ+ = 4π , (4.46)

and the value of the angle γ is then given by

tan γ = R̂ ν

√

1 + ν

1 − ν

2(1 − ν) + R̂2 − b4(2(1 − ν) − R̂2)

(1 − ν) + R̂2(1 + 2ν − ν2) + b4R̂2(1 + ν)2
. (4.47)

As for the parameter b4, one finds that equation (4.40) admits the following three

solutions:

b
(1)
4 = −4(1 − ν) + R̂2(1 + ν2)

R̂2(1 − ν2)
, (4.48)

b
(2)
4 =

1

R̂2(4 − R̂2)(1 − ν2)2

[

2

√

(2(1 − ν) + R̂2ν)3(2(1 − ν) − R̂2ν(1 − 2ν2))

−8(1 − ν)2 − 4R̂2ν(1 − ν)(1 + ν2) + R̂4(1 − 2ν2 − ν4)

]

, (4.49)

b
(3)
4 =

1

R̂2(4 − R̂2)(1 − ν2)2

[

−2

√

(2(1 − ν) + R̂2ν)3(2(1 − ν) − R̂2ν(1 − 2ν2))

−8(1 − ν)2 − 4R̂2ν(1 − ν)(1 + ν2) + R̂4(1 − 2ν2 − ν4)

]

. (4.50)

Out these, only b
(2)
4 leads to a regular black ring. One finds, indeed, that the metric

corresponding to b
(1)
4 has a degenerate rod structure. The rod 2 has the same direction

as its two neighboring (spacelike) rods and the full rod structure is identical to that of

flat space. Moreover the metric has singularities at the end-points of rod 2. For the

solution b
(3)
4 , we have checked numerically that the corresponding final metric has both

naked singularities and CTCs outside the horizon, and it is thus physically unacceptable.

This leaves us with only the solution b
(2)
4 . One can verify that the corresponding metric

is regular and free of CTCs, and, moreover, reduces to the S1-rotating black ring in flat

space when the radius of the KK direction becomes much larger than the scale of the ring.

Therefore, from now on we will only consider the solution with b4 = b
(2)
4 .

4.5 Final solution

At this stage, our solution for the black ring in Taub-NUT is specified by b
(2)
4 , γ and λ

given in equations (4.49), (4.47) and (4.43) respectively. The geometry corresponding to

the data (4.35) has a horizon with topology S2 ×S1 and no conical singularities. However,

11This guarantees that the four-dimensional radial coordinate is canonically normalized.

– 26 –



J
H
E
P
0
2
(
2
0
0
9
)
0
2
1

the solution has Dirac-Misner strings, which can be seen from the fact that the directions

of the spacelike rods have compoenents along ∂t. To cure this pathology one still needs

to apply a transformation Nα ∈ SO(2, 1): this leads to a metric specified by the following

Maison data

χ′′ = Nα χ
′NT

α , κ′′ = (N−1
α )T κ′NT

α , (4.51)

where

Nα =







coshα sinhα 0

sinhα coshα 0

0 0 1






. (4.52)

The value of α needed to cancel the Dirac-Misner strings is found to be

tanhα =
R̂ ν(1 − ν)DνD2 − (1 + ν)2D1 s2γ

−4(1 + ν)2D3 cγ + 2 R̂ ν(1 − ν)Dν

[

D2 + 8 b4(1 − ν)
]

sγ
, (4.53)

where sγ ≡ sin γ, cγ ≡ cos γ and the constants Dν , D1, D2 and D3 are defined in ap-

pendix D. Therefore, our black ring in Taub-NUT is given by the Maison data (4.51),

with the parameters λ, γ, b
(2)
4 and α fixed as in equations (4.43), (4.49), (4.47) and (4.53)

respectively. This completes our construction of the black ring in Taub-NUT.

At this point it is worth summarizing the main steps in our construction:

1. Start form the seed metric (4.24) and construct the corresponding Maison data χ

and κ, as shown in the appendix C.

2. Apply the SL(3,R) transformation (4.35).

3. Fix the parameters λ, b4 and γ to the values given in (4.43), (4.49) and (4.47).

4. Apply the transformation (4.51), with α given in (4.53);

5. Reconstruct the metric from χ′′ and κ′′.

The final solution can be written in the form:

ds2 = λ′11
(

dξ1 + A
)2 − τ ′

λ′11

(

dt+ B
)2

+
1

τ ′
ℓ2R̂4

(x− y)4

{

H(x, y)

(1 + b24)H(y, x)

[

F (x, y) − F (y, x) + 2J(x, y)
]

(

− dy2

G(y)
+

dx2

G(x)

)

−G(x)G(y) dφ2
−

}

,

(4.54)

where

A =
λ′01
λ′11

dt+ 2
λ′01 ω

′0
− + λ′11 ω

′1
−

λ′11
dφ− , B = 2ω′0

− dφ− , (4.55)

and the primed functions are obtained after the sequence of transformations described in

the previous section. These can be read off from (4.51), which is given in terms of the χ-

matrix of the seed solution (4.24) (see appendix C). In (4.54) and (4.55) we have rescaled
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the φ− angle, φ− → 2φ−, so that ∆φ− = 2π.12 To obtain a regular (five-dimensional)

solution, the parameters in the metric (4.54) should obey

0 < ν < 1 , 0 < R̂ <
√

2 . (4.56)

5. Exact extremal ring in Taub-NUT

An appropriate extremal limit of the solution found in the previous section gives an exact

geometry representing a D0-D6 system at zero temperature, with rotation only along the

direction of the ring. The solution has a singular horizon of vanishing area. By studying

this geometry for generic values of the distance between D0 and D6 charges, we compute

their exact interaction potential.

5.1 The solution

In the parametrization of section 4, the extremal solution is obtained by taking ν = 0: in

this limit the horizon degenerates to a singular point. The solution one obtains has only

one independent angular momentum, corresponding to rotation along the ring direction.

As in the case of black rings in flat space, this S1-rotating extremal solutions cannot be

balanced: when ν = 0 the condition of absence of conical singularities, eq. (4.43), has only

the trivial solution λ = 0. Hence the space-time has a conical singularity, localized along

the rod ρ = 0, z ∈ [0, R2/2] (or x = 1).

When ν = 0, the construction of section 4 drastically simplifies. In particular,

eq. (4.40), which guarantees that the t components of rods 1 and 3 be aligned, is satisfied

for any value of b4. Thus the parameter b4 remains unfixed, and one has, in principle, a

valid extremal black ring for any value of b4. It turns out, however, that solutions with

different values of b4 are just different parametrizations of the same physical solution. The

solution with b4 = 0 gives the simplest parametrization, and it is the one that we will

consider in the following. In this case, the value of γ, given by eq. (4.39), simplifies to

tan γ =
R̂

2
√

2

√

1 + λ

1 − λ
. (5.1)

λ remains a free parameter of the solution, essentially determining its angular momentum.

The boost paremeter α, needed to cancel the Dirac-Misner string, is fixed to be

tanhα = R̂
4(1 − λ) + λR̂2

4(1 − λ) − λR̂2

√

1 + λ

8(1 − λ) + R̂2(1 + λ)
. (5.2)

Reconstructing the metric from the Maison data χ′′ and κ′′, and performing some

trivial rescaling of coordinates, one can write the metric of the extremal black ring in

Taub-NUT in the form

ds2 = g11(dξ
1+A1

0dt+A
1
−dφ−)2+g

−1/2
11

[

−V (dt+A0
−dφ−)2+V −1(e2Kds2B+ρ̂2dφ2

−)
]

. (5.3)

12The reason for doing this is that upon KK reduction along ξ1, the angular coordinate φ
−

becomes the

four-dimensional azimuthal direction.
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The part of the metric in square brackets is the 4D Einstein-frame metric. The metric

depends on the parameters ℓ and R, which have dimensions of length, and on the dimen-

sionless parameter λ. As before, we denote R̂ = R/ℓ.

To write the metric coefficients in compact form, it is convenient to define the dimen-

sionless constants

C1 =
[

4(1 − λ) + λR̂2
]2
, C2 =

[

4(1 − λ) + R̂2
]2
, (5.4)

and the functions

F0 = x+ y + λ(1 + xy)

F1 = λC2

[

(1 − λ)(1 − x)2 − (1 + λ)(1 + y)2
]

+ C1(1 + λ)F0

F2 = C2F0 − C1

[

λ(1 + x)2 + 2(1 − λ)x
]

F3 = λC2

[

(1−λ)
(

x2(x+y)−2x
)

+(1+λ)
(

y2(x−y)+2(1−y2)
)

+2λ(−2+x−y+2xy)
]

− C1(1 + λ)
[

λ(x− y)(1 + xy) − (1 − 2λ)x2 − y2 + 2(1 − λ)
]

.

(5.5)

Then the metric coefficients are given by

g11 =
(C2 − C1)F1

[

(1 + λ)C1 − 2λC2

]

F2
,

V = −
√

[

(1 + λ)C1 − 2λC2

]

(C2 − C1)
F0

(F1F2)1/2
,

A1
0 = λ

√

C2(1 − λ2)

C2 − C1

(x− y)
[

C1(1 − x) + C2(x+ y)
]

F1
,

A1
− =

ℓ R̂2

2(C2 − C1)

√

C1[(1 + λ)C1 − 2λC2]

1 − λ

F3

(x− y)F1
,

A0
− = ℓ R̂2

√

(1 + λ)C1C2

[(1 + λ)C1 − 2λC2](C2 − C1)

λ(1 − x2)(1 + y)

(x− y)F0
,

e2K =
F0

(1 − λ)(x+ y)
,

ρ̂2 = ℓ2 R̂4 (1 − x2)(y2 − 1)

(x− y)4
,

ds2B = −ℓ2 R̂4 (x+ y)

(x− y)3

(

dx2

1 − x2
+

dy2

y2 − 1

)

. (5.6)

5.2 Physical parameters

The mass, charges and angular momentum of the solution are

Mtot=
ℓ R̂2

8G4

C2
1(1 − λ) + 2λ(C2 − C1)

2

(C2 − C1)[(1 + λ)C1 − 2λC2]
,

P=
ℓ R̂2

4(C2 − C1)

√

C1[(1 + λ)C1 − 2λC2]

1 − λ
,
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Q=
ℓ R̂2λ

2
[

(1 + λ)C1 − 2λC2

]

√

(1 + λ)C2(C2 − C1)

1 − λ
,

J=
ℓ2R̂4

8G4

λ

1 − λ

√

(1 + λ)C1C2

(C2 − C1)[(1 + λ)C1 − 2λC2]
. (5.7)

(Mtot is the total mass, and thus includes the magnetic monopole contribution. This is

different from M in (2.14).) Note that, as C2 > C1 > 0 and 0 ≤ λ < 1, the combination

(1 + λ)C1 − 2λC2 can become negative for some value of the parameters. This happens for

R̂2 > R̂2
0, where

R̂2
0 =

4(1 − λ)

2 + λ

[

−1 +

√

2(1 + λ)

λ

]

. (5.8)

Beyond this point the magnetic charge becomes imaginary, and the metric ceases to make

sense. Thus the parameters have to be taken in the range

ℓ > 0 , 0 ≤ R̂ < R̂0. (5.9)

For this range of parameters the magnetic and electric charges P and Q attain all

values from zero to +∞, and thus the range (5.9) covers the whole physical spectrum of

the charges.

Note however that the solution (5.3) only spans a codimension one subspace of the full

phase space of extremal black rings in Taub-NUT, describing rings for which the angular

momentum is linked to the charges as

PQ = G4J . (5.10)

The condition above restricts to configurations that, when uplifted to 5D, have angular

momentum in only one plane, which turns out to be the plane of the ring.

5.3 Limits

In this subsection we analyze the various limits that connect the metric (5.3) to previously

known solutions. Taking the radius of the ring to zero one reproduces the extremal KK

black hole with G4J = PQ found in [20, 21]. We also show how to recover the extremal

S1-spinning ring in flat space found in [5]. This limit corresponds to localising the black

ring near the tip of Taub-NUT space and zooming into that region.

Extremal KK black hole with G4J = P Q. We can recover the extremal KK black

hole of [20, 21] with G4J = PQ as the R → 0 limit of our extremal black ring in Taub-

NUT. One should keep in mind that the KK black hole with G4J = PQ has zero area and,

strictly speaking, should be regarded as a naked singularity.

Recall that from five-dimensional viewpoint, KK black holes with non-zero magnetic

charge can be thought of black holes sitting at the tip of the Taub-NUT space. Therefore,

this limit of our solution can be regarded as a zero-radius limit in which effectively we are

localizing the black ring at the tip of the Taub-NUT space while keeping the radius of the
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Taub-NUT circle, and hence the magnetic charge P , as well as the electric charge Q, fixed.

This is achieved by taking R→ 0 and λ→ 1 keeping fixed the parameters R̃ and ℓ, with

R̃ =
R√

1 − λ
. (5.11)

One should also change coordinates (x, y) → (r, θ) as

x→ −1 +
R2

ℓr
cos2

(

θ

2

)

, y → −1 − R2

ℓr
sin2

(

θ

2

)

. (5.12)

The resulting metric is

ds2 =
Hq

Hp

(

dξ1 + A
)2 − r2

Hq
(dt + B)2 +Hp

(

dr2

r2
+ dθ2 + sin2 θ dφ2

)

, (5.13)

where

Hp = r2 + r p+
p2q

2(p + q)
(1 + cos θ) , Hq = r2 + r q +

p q2

2(p+ q)
(1 − cos θ) , (5.14a)

A = − 1

Hq

{

Q

[

2r + p(1 − cos θ)

]

dt + P

[

2Hq cos θ − q

(

r +
p q

p+ q

)

sin2 θ

]

dφ

}

, (5.14b)

B =
(p q)3/2

2(p + q)r2
sin2 θ dφ . (5.14c)

The parameters p and q (with p > 0, q > 0) are related to R̃ and ℓ as

R̃ =
p
√

q(4p+ 3q)

2(p + q)
, ℓ =

p(4p + 3q)

4(p+ q)
, (5.15)

and the electric and magnetic charges are given by

Q2 =
q3

4(p + q)
, P 2 =

p3

4(p + q)
. (5.16)

The metric (5.13) is just the a = m = 0 KK black hole in the form presented in [21].

Moreover, one can check that in this limit the charges satisfy

2G4Mtot =
[

Q2/3 + P 2/3
]3/2

. (5.17)

Extremal S1-spinning black ring in flat space. In the limit in which the KK radius

becomes much larger than the ring size, one expects to recover the extremal S1-spinning

black ring in flat space . This limit is achieved by sending the magnetic charge P to

infinity while keeping finite the size of the black ring, which is roughly given by R. In our

parametrization, we have to send ℓ → ∞ while R, λ and the coordinates (x, y) are kept

fixed. To recover the extremal limit of the S1-spinning ring of [5] in the form presented

in [37], one also has to redefine the R parameter as R → R
√

1−λ
2 and change the angular

coordinates as

φ+ =
1√

1 − λ
(φ′ − ψ′) , φ− =

1√
1 − λ

(φ′ + ψ′) , (5.18)
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since the angular coordinates (φ′, ψ′) of [37] are not canonically normalized. Then

we obtain:

ds2 = − F (y)

F (x)

(

dt− C R
1 + y

F (y)
dψ′
)2

+
R2

(x− y)2
F (x)

[

−G(y)

F (y)
dψ′2 − dy2

G(y)
+

dx2

G(x)
+
G(x)

F (x)
dφ′

2
]

,

(5.19)

where C = λ
√

1+λ
1−λ , F (ξ) = 1 + λξ and G(ξ) = 1 − ξ2. This is the ν → 0 limit of the

metric given in [37].

5.4 Interaction energy

A measure of the interaction energy between the D0 and D6 charges is given by

Eint = Mtot − (MD0 +MD6) = Mtot −
Q+ P

2G4
, (5.20)

where Mtot is the total mass of the system, measured at infinity as the ADM mass, and

MD0, MD6 are the masses of the D0 and D6 branes in isolation.

To obtain a physical understanding of Eint one should express it in terms of the charges

Q and P and of the distance between them. A rough estimate of this distance is given

by the parameter R. A more precise measure of distance, at least in the limit of large

separation, when the distortion on the metric due to the interaction between D0 and D6 is

small, is furnished by the length of the rod at ρ̂ = 0 and 0 < ẑ < R2/(2ℓ), computed with

the 5D metric (5.3):

Rph =

∫ −1

−∞
dy

√

G
(5)
yy

∣

∣

∣

x→1
, (5.21)

where G
(5)
yy is the yy component of the 5D metric (5.3):

G(5)
yy =

R4

ℓ2
g
−1/2
11 V −1e2K

(x+ y)

(x− y)3(1 − y2)
. (5.22)

In the limit R → 0, with fixed Q and P , one finds that Rph so defined goes to a non-zero

value, given by

Rmin = 4Q1/3P 2/3 . (5.23)

This is a quite counterintuitive result: as we have shown in section 5.3, the black ring

reduces in this limit to the extremal KK black hole, which, naively, represents the config-

uration in which the D0 and D6 charges are on top of each other. The fact that one finds

instead a non-zero distance Rmin can be attributed to the large distortion on the metric due

to the D0-D6 interaction (we will show that in this limit the metric has the maximal conical

defect angle ∆ = 2π). To correct for this effect, we redefine Rph as Rph → Rph −Rmin.

The behavior of Eint as a function of R, for different values of the ratio Q/P , was

shown in figure 1. Eint is a monotonically decreasing function of the distance, that goes

to a positive value for R = 0 and vanishes for large R. Hence the interaction between
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D0 and D6 branes is always repulsive. The two limits of R small and large R can be

understood analytically.

The limit of small R and fixed charges is the same as the limit in which the black ring

reduces to the KK black hole. As the mass of the KK black hole is given by (5.17), the

interaction energy in this limit is given by

2G4Eint ≈ (Q2/3 + P 2/3)3/2 − (Q+ P ) > 0 . (5.24)

Keeping the terms of higher order in R, one can see that Eint has an extremum at R = 0

as a function of R. On the other hand, when expressed in terms of Rph, Eint has a non-

vanishing slope at Rph = 0: this is due to the fact that the physical distance Rph depends

quadratically on R, for small R. However, as we have already noted above, Rph does not

seem to provide a good measure of the distance between D0 and D6 in this limit.

The opposite limit is when R ≫ Q, P . To achieve this limit one should take R/ℓ

large; note however that this cannot be done at fixed λ, due to the constraint (5.9). One

should also adjust λ in such a way that the upper bound for R/ℓ, R̂0, becomes large, which

happens if λ goes to zero. Thus the appropriate limit is

R =
ℓ√
ǫ
, λ = λ0ǫ

4 , ǫ→ 0 . (5.25)

In this limit one has

Q

P
≈ λ0

128
, P ≈ 4ǫℓ , G4Mtot ≈ 2ℓ

(

1 +
λ0

128

)

ǫ+
ℓ

4
λ0ǫ

3 . (5.26)

These relations imply that the interaction potential is given by

G4Eint = 21/3Q

(

P

R

)4/3

. (5.27)

We can re-express this result in terms of the physical distance Rph, which, for large sepa-

rations,13 is given by

Rph ≈ 2−1/3P

(

R

P

)4/3

. (5.28)

Substituting this Rph in the above expression for Eint, one finds

G4Eint =
QP

Rph
, (5.29)

which has the form of a repulsive Coulomb potential between charges Q and P . This result

is in agreement with the interaction energy (3.43) derived by the perturbative method.

13At large distances the five-dimensional physical distance coincides with the four-dimensional one (com-

puted in Einstein frame) to leading order.
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5.5 Conical defect

Further information on the interaction between the D0 and D6 charges are obtained by

analyzing the conical defect singularity of the extremal solution (5.3). This singularity is

what is needed to counter-balance the repulsion between the D0’s and the D6’s, and thus

the stress tensor associated to it gives a measure of the interaction.

Following a method used in [39] in an analogous context, we will compute the delta-

function-like contribution to the Ricci tensor at the conical singularity, and use Einstein’s

equation to derive the associated stress tensor.

To obtain a duality invariant description of the system, we focus on the 4D Einstein

frame metric, given by

ds24 = −V (dt +A0dφ−)2 + V −1
[

e2K(dρ̂2 + dẑ2) + ρ̂2dφ2
−

]

, (5.30)

where ρ̂ and ẑ are the 4D Weyl coordinates

ρ̂ =
ρ

ℓ
, ẑ =

z

ℓ
. (5.31)

In the vicinity of the rod ρ̂ = 0 and 0 < ẑ < R2/(2ℓ), one has that

A0 ≈ 0 , e2K ≈ 1 + λ

1 − λ
. (5.32)

Thus near this rod the metric in the ρ̂-φ− plane decouples from the remaining directions

and becomes conformally equivalent to the flat metric in R
2 after the change of coordinates

φ̂ =
φ−
eK

=

√

1 − λ

1 + λ
φ− . (5.33)

The condition that at asymptotic infinity the metric be flat fixes the periodicity of φ− to

be 2π. We thus see that along the rod under consideration there is a conical defect given by

∆ = 2π

(

1 − 1

eK

)

= 2π

(

1 −
√

1 − λ

1 + λ

)

. (5.34)

Note that for our geometries the deficit angle ∆ is always positive.

The curvature due to this conical defect can be computed from the general relation [40]

∫

M
R = 2∆AΣ , (5.35)

where R is the Ricci scalar, M is the full space-time manifold, AΣ is the space-time area

of the conical defect. In our case Σ is the rod 0 < ẑ < R2/(2ℓ) times time, and its area is

AΣ =
∫

dtdẑ eK . Thus, eq. (5.35) implies

R = 2∆V δ(ρ̂) , (5.36)

where the delta-function δ(ρ̂) is normalized as
∫

dρ̂dφ− ρ̂ eKδ(r̂) = 1. From the Ricci scalar

R, and the fact that the curvature only has components along the ρ̂-φ− plane — so that
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Figure 5: Conical defect versus radius R in units of P for Q/P = .1 (thin), 1 (thick) and 10

(thicker). Note that the conical defect is never zero for finite values of R. This means that the

solution is never balanced. In the R → 0 limit the conical defect is maximal: 2π. The force Fdef is

porportional to ∆ (5.39).

R00 = Rzz = 0 — one can derive the Einstein tensor and hence the stress tensor Tµν
associated to the conical defect. One finds that

T00 = (8πG4)
−1∆V 2δ(ρ̂) , Tzz = −(8πG4)

−1∆e2Kδ(ρ̂) . (5.37)

The energy of the conical defect, obtained by integrating the energy density T00√−g00 over

the space directions, is given by

Edef =

∫

dẑdr̂dφ− ρ̂ e2K
T00√−g00

V −3/2 = (8G4)
−1

(

√

1 + λ

1 − λ
− 1

)

R2

ℓ
. (5.38)

The force exerted by the strut is obtained as the integral of the pressure Tzz

gzz
over the

directions transverse to the strut:

Fdef =

∫

dρ̂dφ− ρ̂ eK
Tzz
gzz

V −1 = −(4G4)
−1

(

1 −
√

1 − λ

1 + λ

)

. (5.39)

We note that Fdef is proportional to the conical defect ∆.

The plots describing the behavior of Edef and Fdef as a function of the distance pa-

rameter R, for fixed values of the charges Q and P are depicted in figures 5 and 6.

One notes from these plots that the force is always repulsive and is maximal at R = 0.

The energy Edef vanishes at large R, has a maximum at some finite value of R and vanishes

again at R = 0. This seems to contradict the behavior found for the interaction potential

Eint, which gave a repulsive potential for every value of R. We interpret the vanishing

of Edef at small R as a volume effect: at R = 0 the metric has a maximal conical defect

∆ = 2π, and thus the space transverse to the strut becomes effectively one-dimensional,

and its volume vanishes. Hence the fact that Edef vanishes does not mean that the D0-D6

interaction becomes attractive at small R.
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Figure 6: Energy of the conical defect versus R/P for Q/P = .1 (thin), 1 (thick) and 10 (thicker).

Energies are normalised as in figure 1. The plot shows that Edef has a maximum at some finite

value of R. The position of the maximum increases with Q/P . The vanishing of Edef at small R

is a volume effect, and does not mean that the force between the charges becomes attractive at

small distances.

The behavior of Edef and Fdef in the limits of small and large separations can be

reproduced analytically. For small R one finds

8G4Edef ≈ 2
√

2R
Q1/3

√

4P 2/3 + 3Q2/3
,

4G4Fdef ≈ −1 +
R

P 2/3Q1/3

√

P 2/3 +Q2/3

2(4P 2/3 + 3Q2/3)
. (5.40)

The large R behavior is given by

8G4Edef ≈ 27/3Q

(

P

R

)4/3

,

4G4Fdef ≈ −25/3Q

P

(

P

R

)8/3

. (5.41)

Once expressed in terms of the physical distance Rph, given in this limit in (5.28), these

expressions simplify to

2G4Edef ≈
QP

Rph
,

2G4Fdef ≈ −QP
R2

ph

, (5.42)

which are again of Coulombic form. Note that, in this limit, the energy of the conical defect

accounts for half of the interaction energy between D0 and D6 branes: Edef = Eint/2.

6. Exact black rings in Taub-NUT

Using the exact solution constructed in section 4, we can study the D0-D6 system above

extremality in a regime in which the gravitational backreaction of the D0 branes on the
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D6 Taub-NUT background is fully taken into account. We are interested in configurations

of equilibrium, in which conical singularities have been eliminated.

In this analysis, one should keep in mind that the solution of section 4 has only one

independent angular momentum, and thus it does not represent the most general black ring

in Taub-NUT. Indeed, the starting seed solution (4.24) only has intrinsic rotation along the

S1 of the ring. This can be seen from the fact that only the BZ transformation affecting the

horizon rod gives rotation to the solution. The angular momentum on the S2 is induced

by the soliton transformation on the spacelike rods, which mixes the φ̂ and ψ̂ directions. It

is precisely this lack of generality that implies that the four-dimensional conserved charges

cannot all be independent. Recall that from a four-dimensional perspective, our solution is

characterized by the four conserved charges (Mtot, J, Q, P ), see appendix D. However, our

(balanced) solution only has three free parameters, namely, an overall length scale ℓ and

two dimensionless quantites, (R̂, ν). Therefore, once we have fixed this overall scale fixing,

say, P , there must exist a relation between the remaining conserved charges, which relates

the angular momentum J along the S2 to Q, P and Mtot. At the limiting endpoints of the

family of solutions, i.e., when the ring is infinitely far from the nut, or when it collapses

into a singular extremal black hole, this relation becomes J = PQ/G4, but at any other

point in the space of our solutions we have J 6= PQ/G4, signaling a non-zero component

along the S2 of the ring.

A more general doubly spinning black ring in Taub-NUT must exist with independent

rotation along the S2 which should allow to vary J independently of PQ, so the four

dimensional solution would be characterized by four independent conserved charges. In fact

such solutions are easily described in the thin ring limit within the perturbative approach,

see appendix E. In this paper we shall content ourselves with studying in detail the physics

of the black ring in Taub-NUT with just one independent angular momentum. We leave

the problem of constructing the general solution for future work.

From the four-dimensional perspective, we have an electrically charged rotating black

hole at y = − 1
ν , separated from the magnetic monopole, which sits at (x = +1, y = −1) and

which appears as a naked singularity, although the five-dimensional geometry is regular.

6.1 Dimensionless quantities

We characterize the solution in terms of four-dimensional magnitudes, since the solution is

asymptotically flat in the non-compact four dimensions.

In Kaluza-Klein solutions it is natural to fix the length of the KK circle and measure all

dimensionful quantities relative to it. Since the asymptotic length of this circle is measured

by the magnetic charge as in (1.1), an essentially equivalent way of doing this is to define

dimensionless quantities by dividing the physical magnitudes by suitable powers of P . We

first fix one of the dimensionless parameters by fixing the total mass

G4Mtot

P
≡ µ+

1

2
. (6.1)

Note that µ ≥ 0, with µ = 0 when the mass equals the D6 brane mass

MD6 =
P

2G4
. (6.2)
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Figure 7: Phase diagram of black rings in Taub-NUT. Left: Phase diagram for µ = 5 × 10−6.

In this plot the value of the reduced area aH and that of the reduced electric charge q have been

multiplied by a factor of 107 and 108 respectively. Center: Phase diagram for µ = 1/2. For small

µ the curves resemble the ones in asymptotically flat five dimensions, but in contrast to them, the

thin ring branch extends only up to a maximum value of the charge for given mass. The limiting

values of the area and charge for fixed mass can be found from (3.34) and (3.37). Right: Phase

diagram for µ = 9/2. For µ > µc = 9/10 the thin ring branch disappears: we regard this as nothing

more than a peculiar feature of the particular family of solutions we have constructed.

Then µ measures the energy above the D6 brane mass. This is convenient, since we

regard the D6 brane as remaining unexcited, while the D0 brane (the black ring) is

thermally excited.

We define other dimensionless conserved quantities as

aH =
A4

P 2
, j =

G4 J

P 2
, q =

Q

P
. (6.3)

If we are interested in having a five-dimensional perspective on the solution, we note,

using the relations (D.6), that the angular momenta Jψ along the S1 and Jφ along the S2

of the black ring are captured by the five-dimensional dimensionless quantities

jψ = q , jφ = j − q , (6.4)

see eq. (E.2). Thus q measures the S1 spin of the ring. The four and five-dimensional

horizon areas differ only in a constant factor since we are keeping L fixed and so aH
represents both.

6.2 Phase diagram

For fixed magnetic charge P , the area of the black ring is a two-dimensional surface over

the plane of µ and q, aH(µ, q). In order to visualize it, we consider sections at constant µ.

In figure 7 we present three illustrative plots, one at a very small value of µ, another at a

value µ = 1/2 that makes the D0 and D6 equally heavy, and a third one at very large D0

mass, µ = 9/2.

Just like in the asymptotically flat case, black rings exist in two branches, usually

referred to as thin and fat rings. Despite the similarity to the singly spinning ring in flat

space [5], there is a small distorsion due to the fact that our black ring is doubly spinning,

and the angular momentum in the S2 of the ring varies along the curves shown in figure 8.
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Figure 8: Phases in the (q, j − q)-plane. From left to right we show the phases corresponding to

µ = 5× 10−6, 1/2 and µ = 9/2 respectively. These curves represent only the subfamily constructed

in this paper of a larger family of solutions with four-independent parameters, which should cover

a finite region of the (q, j − q)-plane at every µ.

Therefore it is more accurate to compare it to a family of doubly spinning black rings,

whose S2-spin is generically small and vanishes at the endpoint solutions.

For µ close to 0 the black ring can be thought of as a small perturbation in the KK

monopole background. In this regime the phase diagram looks very similar to that of a

single-spin black ring in flat space — observe in figure 8 that for small µ we have j ≃ q

so jφ ≃ 0. However, the curves of aH at fixed µ terminate at a finite value of the charge

and area. The endpoints can in fact be precisely calculated: since they correspond to

rings at infinite distance from the nut, they are accurately described by the construction

of section 3. Thus the limiting values of the area and charge for fixed mass correspond to

the critical values computed in (3.34) and (3.37). This is the case in fact for all values of

µ, not just small ones. For small µ we can also find the approximate values of the lower

bound on q and upper bound on aH using the bounds on black rings in flat space,

aH ≤ 32
√

2π

3
√

3
µ3/2 , q ≥

√
2µ3/2 (µ≪ 1) . (6.5)

These correspond in fact to the bounds quoted in (1.6).

As µ increases the lower limit on the area for fixed mass increases and the upper limit

on the charge decreases (see (3.36)), so the thin ring branch shortens. As we move slightly

away from this point the angular momentum along the S2 of the ring switches on. The

behavior of the phase diagram near the endpoint of the thin ring branch for arbitrary values

of µ can be analytically derived from our exact solution: it is described by the limit in

which the parameter ν is sent to zero, and R̂ is taken of the form R̂ =
√

2(1 − ην), where

η is a fixed parameter controlling the mass of the solution. In this limit the perturbative

approximation of section 3 becomes accurate, and indeed it is possible to match the limit of

our exact solution with a boosted Kerr string with fixed boost parameter and perturbative

angular momentum (see appendix E).

As we keep increasing µ we observe that the thin ring branch disappears at the critical

value of µc = 9/10. We believe that this is an artifact of our (particular) solution and

that a more general black ring in Taub-NUT should have two branches of solutions for all

µ > 0, in agreement with the perturbative construction of section 3, which clearly contains

thin black rings far from the nut for every value of µ.
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For all values of µ, there is a particular limiting value of q for which aH → 0. This

corresponds to the zero radius limit of our solutions, and we recover the extremal (G4J =

PQ) nakedly singular KK black hole of [20, 21].

7. Outlook

Our study provides an example of how novel gravitational techniques can be applied to ex-

tract useful information about the dynamics of D-branes. In particular, we have uncovered

a new way —via thermal excitation— to produce bound states of D0 and D6 branes, and

exhibited how a certain extremal black hole can be formed by bringing together D0 and

D6 branes in a continuous manner, with the black hole mass corresponding to the mass of

the D0 and D6 constituents plus the interaction energy.

We have also used our methods to analyze the stability of the configurations. The

reader may have noticed that we have only discussed stability with respect to changes in

the distance between the D0 and D6 branes, which is to say, changes in the radial position

of the black ring in the Taub-NUT background. Thin black rings are known to be stable

to such changes in asymptotically flat space [29], but on the other hand, they are expected

to be generically unstable to Gregory-Laflamme-type of modes that create inhomogeneities

along the ring and that would be missed by our analysis. Should not we expect our black

rings to suffer from them, too?

The answer is that such instabilities can in fact be avoided. Extremal singular rings,

corresponding to zero-temperature D0 branes, are certainly not expected to suffer from

them. Non-extremal black rings should suffer from GL instabilities only if they are thinner

than the Kaluza-Klein radius, r0 < L. However, we have seen that within the scope of our

methods we can study black rings with r0 > L as long as they are far from the nut, R≫ r0.

Such black rings resemble black strings that are not afflicted by the GL instability. We

have found that they are also radially stable so, since no other mechanism for instability

is known to affect them, we can expect these black rings to be stable. While we have not

discussed in any detail fat black rings (with, roughly, r0 ∼ R), for example those that

correspond to the lower branches of the curves in figure 7, the generic arguments of [29]

lead us to expect them to be radially unstable.

There is a number of possible extensions of our work. For instance, the perturbative

techniques can be easily extended to other backgrounds of Taub-NUT type, supersymmetric

or otherwise, and also to charged black rings (see e.g., [41]).

Perhaps more interestingly, with the present techniques for generating exact solutions

we could also obtain solutions where a black hole sits at the nut. This would correspond

to thermally exciting the D6 branes, and presumably it would allow for equilibrium states

of extremal or non-extremal D0 branes a finite distance apart. In five dimensions, the

configuration can be regarded as a black saturn [8] in Taub-NUT, a non-supersymmetric

analogue of the solution in [16]. Upon Kaluza-Klein reduction it would describe an elec-

tric and a magnetic black hole, both of them generically rotating under the effect of the

Poynting-induced angular momentum, and in equilibrium at a finite distance from each

other. In fact, in principle it should be possible to introduce an arbitrary number of black
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rings, which from the four-dimensional viewpoint would yield a set of electric black holes

plus a magnetic one, generically non-extremal, rotating and aligned along a common axis,

and in dynamical (although not thermodynamical) equilibrium.

This would be, to our knowledge, the first known way of achieving equilibrium in an

asymptotically flat, non-supersymmetric and non-extremal multi-black hole configuration

in four dimensions. Such configurations should also be stable bound states of black holes.

We leave this interesting problem for future work.
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A. Supergravity solution for D6 brane with B-flux

We want to construct a supersymmetric solution describing a D6 brane with B flux in

its worldvolume. We shall consider the fluxes to be homogeneous and isotropic in the D6

worldvolume, which for simplicity we may consider to be wrapping a square T 6. In this

case the solution we seek, when lifted to M-theory and then reduced along the T 6, is a

solution to the minimal supergravity theory in five dimensions.

The required class of solutions has been discussed in [31, 32, 16 – 18] (we follow

mostly [16]). The solutions have metric

ds2 = −Z−2(dt + ω)2 + Zhmndx
mdxn (A.1)

with hmn the metric of a hyper-Kähler base space, and gauge potential

A =

√
3

2

[

Z−1(dt + ω) − β
]

. (A.2)

We take the base space to be a single-center Gibbons-Hawking space,

hmndx
mdxn = H−1(dψ + (cos θ − 1)dφ)2 +H(dr2 + r2dθ2 + r2 sin2 θdφ2) (A.3)

with

H = h+
1

r
. (A.4)

The solution is fully specified in terms of three more harmonic functions Hp, Hq, H0 in

three-dimensional space, as14

Z = Hq +
H2
p

H
(A.5)

14To compare to the notation in [16], change (H, Hp, Hq, H0) → (Hk, K, L,−2M), and Z → H .
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and

ω = ω0(dψ + (cos θ − 1)dφ) + ω̃ , β = β0(dψ + (cos θ − 1)dφ) + β̃ . (A.6)

with

ω0 = −H0

2
+

3HpHq

2H
+
H3
p

H2
, β0 =

Hp

H
. (A.7)

The equations that determine the one-forms ω̃ and β̃ in terms of H,Hp,Hq,H0 can be

found in the references mentioned above.

The residues of poles in (H,Hp,Hq,H0) are respectively associated to numbers of D6,

D4, D2, D0 branes, so our choice for H in eq. (A.4) corresponds to having a single D6

brane at the origin. Indeed, when Hp = 0,Hq = 1,H0 = 0 we recover the solution for a

single KK monopole. We now want to introduce B-field moduli corresponding to D4 branes

‘dissolved’ in the worldvolume of the D6. These will also induce D0 and D2 charges, but

we do not want to introduce ‘pure’ D0’s and D2’s. So we set Hp,Hq,H0 to be constant

moduli hi, without any poles,

Hp = hp , Hq = hq , H0 = h0 . (A.8)

With these values we easily find that β̃ = 0, and that ω̃ = h0

2 (cos θ − 1)dφ. This last term

introduces pathological Dirac-Misner strings involving the time direction and so it must be

set to zero. Then

h0 = 0 and ω̃ = 0 . (A.9)

Let us now rewrite the solution in a manner convenient for KK reduction,

ds2 =
Σ2

H2Z2

(

dψ + (cos θ − 1)dφ − ω0H
2

Σ2
dt

)2

+
HZ

Σ

(

− 1

Σ
dt2 + Σ(dr2 + r2dθ2 + r2 sin2 θdφ2)

)

. (A.10)

where Σ =
√

Z3H − ω2
0H

2 is the ‘entropy function’. Since r2Σ vanishes at the D6 core

at r = 0, there is no entropy associated to this configuration, as expected. The full five-

dimensional solution is in fact smooth there.

We shall restrict the remaining moduli h, hp, hq by demanding that the solution asymp-

totes to the Kaluza-Klein monopole vacuum with asymptotic circle radius L. We demand

that as r → ∞
Σ → L

2
, HZ → 1 . (A.11)

This imposes two relations among the moduli, namely,

√

3h2
ph

2
q + 4hh3

q = L , h2
p + hhq = 1 , (A.12)

which we solve in parametric form as in eq. (3.4).
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B. Exact supersymmetric D0-D6 bound states

It is not difficult to explicitly construct exact supergravity solutions for supersymmetric

bound states of D0 and D6 branes. This was first done in an explicit manner in [31]. Such

solutions only provide equilibrium configurations, with the distance between the branes

fully fixed by the field B ≥ Bc, so we cannot study how the interaction potential changes

as B changes. Moreover, they do not provide any information about configurations in

which supersymmetry is broken. Nevertheless, for completenes, and as a check on our

approximate methods, we present here the configuration with one D6 brane and n0 D0

branes. It takes the form of eqs. (A.1)–(A.7) but now

H =
2

L

1 − 3b2
√

(1 + b2)3 + 2bn0(3 − b2) + n2
0

+
1

r
,

Hp =
2b(1 + b2) + n0

√

(1 + b2)3 + 2bn0(3 − b2) + n2
0

,

Hq =
L

2

(1 + b2)2 + 2bn0
√

(1 + b2)3 + 2bn0(3 − b2) + n2
0

,

H0 =
L3

8

(

2

L

(1 − 3b2)n0
√

(1 + b2)3 + 2bn0(3 − b2) + n2
0

+
n0√

r2 +R2 − 2rR cos θ

)

(B.1)

and the distance between the D0 and D6 is fixed to r = R, with

R =
L

2

√

(1 + b2)3 + 2bn0(3 − b2) + n2
0

3b2 − 1
. (B.2)

Observe that when n0 = 0 we reproduce the same background as in the previous subsection.

Moreover, the equilibrium distance (3.30), obtained in the limit where the backreaction

from the D0 branes, agrees with the exact result (B.2) when n0 → 0.

C. Maison data

In this appendix we present the computation of the Maison data (χ, κ) of our seed

solution (4.24). To avoid cluttering formulas, we will set ℓ = 1 and we will restore the

units when needed.

As a first step, we compute the quantities λab, τ and ωa = ωa−dφ−, needed to rewrite

the seed metric (4.24) in the form (4.3). This only requires algebraic manipulations, and

one finds:

λ00 = −H(y, x)

H(x, y)
, (C.1a)

λ01 = − RC1

2H(x, y)

(

ωψ + b̄4 C2 ωφ
)

, (C.1b)

λ11 =
R2

4(x−y)2
1

H(y, x)

[

F (x, y)−F (y, x)+2J(x, y)−C2
1 (x−y)2
H(x, y)

(

ωψ+b̄4C2ωφ
)2
]

, (C.1c)

τ =
R2

4(x− y)2
1

H(y, x)

[

F (x, y) − F (y, x) + 2J(x, y)
]

, (C.1d)
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ω0
− =

RC1

H(y, x)

ωψ
[

F (x, y) + J(x, y)
]

+ b̄4 C2 ωφ
[

F (y, x) − J(x, y)
]

F (x, y) − F (y, x) + 2J(x, y)
, (C.1e)

ω1
− =

F (x, y) + F (y, x)

F (x, y) − F (y, x) + 2J(x, y)
. (C.1f)

To compute the scalar potentials Va and the matrix κ, one needs instead to solve

differential equations, which is, in practice, a difficult task in our case. However it was

shown in [12] that one can relate Va and κ to some auxiliary matrices, Γ and κ̃, which can

be computed via a generalization of BZ techniques.

The Γ and κ̃ matrices. The Γ0 and κ̃0 matrices of the solution G̃0 are given by

Γ0 =
1

2
diag {µ3 − µ̄1 − µ̄4 , µ̄2 − µ̄1 , µ̄3 − µ̄2} , (C.2)

κ̃0 =
1

8
diag

{

µ2
3 − µ̄2

1 − µ̄2
4 , µ̄

2
2 − µ̄2

1 , µ̄
2
3 − µ̄2

2

}

. (C.3)

To construct the Γ and κ̃ matrices of the seed solution (4.18) one can use the fact that the

metric G can be constructed in a two-step process,

G = µ4

(

1 − ρ2 + µ2
4

µ2
4

P2

)(

1 − ρ2 + µ̄2
1

µ̄2
1

P1

)

G̃0 (C.4)

where 1 is the 3 × 3 identity matrix, and P1,2 are the projectors

(Pi)ab =
m

(i)
c (G0)cam

(i)
b

m
(i)
d (G0)df m

(i)
f

. (C.5)

In the equation above G0 denotes the seed metric at each step and m
(i)
a are the vectors

constructed out of the BZ vectors m
(i)
0a and the seed solution at each step,

m(i)
a = m

(i)
0b

[

Ψ−1
0 (µi, ρ, z)

]

ba
. (C.6)

Defining a new matrix Qi as

Qi =
ρ2 + µ2

i

µi
Pi , (C.7)

one can show that the Γ and κ̃ matrices of the solution G are given by

Γ = Γ0 +
1

2

2
∑

i=1

Qi +
1

2
µ̄41 , (C.8)

κ̃ = κ̃0 +
1

8

(

µ̄2
1 − ρ2

µ̄1
Q1 +

µ2
4 − ρ2

µ4
Q2

)

+
1

4

2
∑

i=1

[

Qi,Γ0

]

− 1

8

[

Q1,Q2

]

+
1

8
µ̄2

4 1 . (C.9)

The explicit expressions of the Γ and κ̃ matrices are too involved to be written down here.
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Va and κ. The potentials Va can be computed from the matrix Γ derived above as

V0 = Γ −
0 + c0 , V1 = Γ −

1 + c1 , (C.10)

where the subscripts ± denote components in the base (4.2), and c0,1 are constants which

are determined by the asmptotic boundary conditions. As discussed in [10, 12], the

matrix χ, computed from these data, should approach a constant matrix η5 at asymptotic

spatial infinty,

χ
r→∞−−−→ η5 ≡







−1 0 0

0 0 1

0 1 0






. (C.11)

In the (x, y) coordinates that we are using, spatial infinity lies at x → y → −1, and the

correct asymptotics (C.11) is achieved by taking

c0 = 0 , c1 =
R2(λ− 2ν + λν)

4(1 − λ)
. (C.12)

One can also check that the sub-leading correction to the asymptotic limit of the χ matrix

is of the form

χ = η5

[

1− δχ

r2
+O

(

1

r4

)]

, (C.13)

where δχ is a constant 3 × 3 matrix. The matrix δχ contains the information about the

conserved charges of the solution.

The last piece of data needed is the matrix of one-forms κ. The components of this

matrix can be derived from the following relations [12]:

κ00 = V0 ω
0 + Γ 0

0 + c00 ,

κ01 = V1 ω
0 + Γ 0

+ + c01 ,

κ02 = −ω0 + c02 ,

κ10 = V0 ω
1 + Γ +

0 + c10 ,

κ11 = V1 ω
1 + Γ +

+ + c11 ,

κ12 = −ω1 + c12 ,

κ20 = V0

(

V0 ω
0 + V1 ω

1
)

+
1

2
(ΓσΓ) −

0 + κ̃ −
0 + c0

(

Γ 0
0 − Γ −

− − z
)

+ c1 Γ +
0 + c20 ,

κ21 = V1

(

V0 ω
0 + V1 ω

1
)

+
1

2
(ΓσΓ) −

+ + κ̃ −
+ + c1

(

Γ +
+ − Γ −

− − z
)

+ c0 Γ 0
+ + c21 ,

κ22 = −V0 ω
0 − V1 ω

1 − Γ 0
0 − Γ +

+ − c00 − c11 , (C.14)

where σ is a constant matrix which, in the (t, φ+, φ−) basis, is given by

σ =







1 0 0

0 1 0

0 0 −1






. (C.15)
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The cij ’s are constants that are fixed by requiring that asymptotically, the κ matrix ap-

proaches

κ ≈ −δχ
4

cos 2θ dφ− +O

(

1

r2

)

. (C.16)

For our solution (4.24), we can obtain the correct asymptotics for the κ matrix by fixing

these constants as

c00 =
R2λ(1 − ν)

2(1 − λ)
,

c01 = c20 = −R
3C1(1 − ν)

[

(1 − λ+ b̄4C2(1 − ν)(1 + ν − 2λν)
]

4(1 − λ)
[

1 − λ+ b̄4C2(1 + λ)(1 − ν)2
] ,

c02 = c10 =
R b̄4C1C2(1 − ν)2

1 − λ+ b̄4C2(1 + λ)(1 − ν)2
,

c11 = −R
2
[

b̄4(λ− ν)(1 − ν)2 + C2 ν(1 − λ)
]

2(1 − λ)
[

b̄4(1 − ν)2 + C2

] ,

c12 = 0 ,

c21 = −R
4λ(λ− ν)(1 − ν)

8(1 − λ)2
.

(C.17)

Once this constants are fixed, the κ matrix is uniquely determined; the explicit expression

is very long and we will not give it.

D. Conserved charges

Upon reduction along the KK circle parametrized by the coordinate ξ1 in (4.54) we obtain

a four dimensional asymptotically flat solution. This solution consists in an KK electrically

charged rotating black hole separated from the nut, which accounts for the magnetic charge.

We can easily compute the conserved charges of the four-dimensional solution, and we find:

Mtot =
ℓ

16G4(1+b4)(1−ν2)2

{

(1+ν)2
[

D1c2γ(3+ch2α)−6
(

D1−4R̂2ν(1−ν)(1+b4)
)

sh2
α

+ 4D3 sγ sh2α

]

+ R̂Dνν(1−ν)
[

D2s2γ(3+ch2α)+2
(

D2+8 b4(1−ν)
)

cγsh2α

]

}

,

(D.1a)

Q =
ℓ

8(1 + b4)(1 − ν2)2

{

[

(1 + ν)2D1 c2γ − 3(1 + ν)2
(

D1 − 4(1 + b4)R̂
2 ν(1 − ν)

)

+ R̂Dν D2 ν(1 − ν) s2γ

]

sh2α

+
[

4(1+ν)2D3sγ+2R̂Dνν(1−ν)
(

D2+8b4(1−ν)
)

cγ

]

ch2α

}

,

(D.1b)
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P =
ℓ

8|1 + b4|(1 − ν2)2

{

2
[

R̂Dν D2 ν(1 − ν) c2γ − (1 + ν)2D1 s2γ

]

shα

+
[

− 2R̂Dνν(1−ν)
(

D2+8b4(1−ν)
)

sγ+4(1+ν)2D3cγ

]

chα

}

,

(D.1c)

J =
R2

16G4 (1 + b4)2(1 − ν)3(1 + ν)2

{

[

D7 (1 + ν) s2γ + 2 R̂ Dν D8 (1 − ν) ν c2γ

]

chα

− 2
[

R̂Dν(D8+D9)(1−ν)νsγ+(D7+D10R̂
2ν2)(1+ν)cγ

]

shα

}

,

(D.1d)

Similarly, the horizon area, temperature and angular velocity are found to be

A4 =
π R2 ν2

2(1+b4)2(1−ν2)5/2

{

[

2R̂DνD4(1−ν)(1+ν+b4(1−ν))−D5(1+b4)(1+ν)2s2γ−

+ 2R̂Dν(1+b4)(1−ν2)(D4−2νR̂2(1+ν+b4(1−ν)))c2γ
]

chα

+
[

(1+ν)2D6cγ+4R̂Dνν(1−ν)(D2+8b4(1−ν))sγ
]

shα

}

,

(D.2a)

TH =
2(1+b4)

2(1−ν2)5/2

ℓ π ν

{

[

2R̂DνD4(1−ν)(1+ν+b4(1−ν))−D5(1+b4)(1+ν)2s2γ−

+ 2R̂Dν(1+b4)(1−ν2)(D4−2νR̂2(1+ν+b4(1−ν)))c2γ
]

chα

+
[

(1+ν)2D6cγ+4R̂Dνν(1−ν)(D2+8b4(1−ν))sγ
]

shα

}−1

,

(D.2b)

ΩH =
8|1+b4|(1−ν2)2

ℓ

{

[

2 R̂ Dν D4 (1 − ν)(1 + ν + b4(1 − ν)) −D5 (1 + b4)(1 + ν)2s2γ−

+ 2R̂Dν(1+b4)(1−ν2)(D4−2νR̂2(1+ν+b4(1−ν)))c2γ
]

chα

+
[

(1+ν)2D6cγ+4R̂Dνν(1−ν)(D2+8b4(1−ν))sγ
]

shα

}−1

,

(D.2c)

To simplify the expressions for the various magnitudes in equations (D.1)–(D.2), we

have defined cγ ≡ cos γ, sγ ≡ sin γ, and chα ≡ coshα, shα = sinhα, which in turn are fixed

according to (4.47) and (4.53) respectively. Similarly, the constants Di are given by

Dν = (1 + ν)

√

1 + ν

1 − ν
, (D.3a)

D1 = (1 − b4) −
[

2(1 − b4) − 3(1 + b4) R̂
2
]

ν +
[

(1 − b4) − 3 (1 + b4)R̂
2 − 1

2
(1 + b4)R̂

4
]

ν2

− 1

4
(1 − b4) R̂

4 ν4 , (D.3b)
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D2 = R̂2(1 + ν)2 − 4 b4
[

1 − ν − 1

4
R̂2(1 + 2 ν − ν2)

]

, (D.3c)

D3 = (1 − b4)
[

(1 − ν)2 +
1

4
R̂4 ν4

]

+
1

2
(1 + b4)R̂

4 ν2 . (D.3d)

D4 = 4 (1 − ν) + R̂2 (1 + b4 + (1 − b4) ν
2) (D.3e)

D5 = 4

[

(1 − ν)2 − 3 R̂2(1 − ν) ν +
1

4
R̂4 ν4

]

− 1

2
(1 + b4) R̂

4 (1 − ν2)2 (D.3f)

D6 = (1 + b4)

{

8

[

(1 − ν)2 + R̂2 (1 − ν) − 1

4
R̂4 ν4

]

+ (1 + b4) R̂
4 (1 − ν2)2

}

+ 8 (1 − b4) R̂
2 (1 − ν) ν2 (D.3g)

D7 =
1

2
(1 + ν) [4 (1 − ν)2(1 − ν + 2ν2) − 12 R̂2 (1 − ν2) ν2 − R̂4 (1 − 2ν − ν3) ν3]

− b4R̂
4(1−ν2)2ν3− 1

2
b24(1−ν)[4(1−ν)2(1+ν+2ν2)−12R̂2(1+2ν−3ν2)ν2

+ R̂4 (1 + 2ν + ν3) ν3] (D.3h)

D8 = 2 R̂2 (1 + ν2) ν2 − 2 (1 − b24) (1 + ν)2 (1 − ν) − 2 b24 (1 − ν) ν2 (4 + R̂2(1 + ν))

− (1 + b4)
2 R̂2 (1 − ν)2 ν2 (D.3i)

D9 = 4 (1 − ν) [(1 + ν)2 (1 − b24) + 4 b24 ν
2] (D.3j)

D10 = (1 + ν) [6 (1 − ν2) + R̂2 (1 − 2ν − ν3) ν] + 2 b4 R̂
2 (1 − ν2)2 ν

− b24 (1 − ν) [6 (1 + 2ν − 3ν2) − R̂2 (1 + 2ν + ν3) ν] (D.3k)

We have checked numerically that if the parameters ν and R̂ are constraint to vary

in the ranges (4.56), the mass M , the temperature TH and the horizon area AH are

always positive.

In terms of the four dimensional quantities, the five-dimensional angular momenta

corresponding to the original angles (4.2) are given by

J
(5)

ψ̂
=
P Q

G4
+ J , J

(5)

φ̂
=
P Q

G4
− J . (D.4)

Note that the angles ψ̂ and φ̂ are related to the angles ψ and φ used in section 3 as

ψ̂ =
ψ

2
, φ̂ =

ψ

2
− φ , (D.5)

and thus the corresponding conserved charges are related as

Jψ =
1

2
(J

(5)

ψ̂
+ J

(5)

φ̂
) =

P Q

G4
, Jφ = −J (5)

φ̂
= J − P Q

G4
. (D.6)

The horizon area of the five-dimensional solution is given by

A5 = 2π LA4 , (D.7)

where L is defined below (D.9). The temperature of the horizon of the four- and the

five-dimensional solutions coincides. The mass of the five-dimensional solution can be

computed as

M = Mtot −MD6 , (D.8)
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where MD6 is the mass of the KK monopole (6.2).

Finally we notice that regularity of the new five-dimensional metric (4.54) imposes

that ξ1 has to be periodically identified as

ξ1 ∼ ξ1 + 2πL , L =
4P

N6
, (D.9)

for an integer N6.

E. Physical magnitudes of the approximate doubly spinning solution

It is very easy to include in our perturbative construction a second independent angular

momentum along the S2 of the ring. We need only use the stress tensor that reproduces the

long-distance field of a boosted Kerr black string. This turns out to be very simple, since

it takes the same form as (2.4), plus an additional component Tτφ for the spin along φ.

Actually, we do not even need the details of this component, since it falls off sufficiently fast

at infinity so as to not affect the equilibrium equations. To obtain the value of the spin Jφ
of the ring, we need simply compute it for the boosted Kerr string at the equilibrium boost.

Then, the five-dimensional physical magnitudes of the approximate doubly spinning

black ring in Taub-NUT (so b = 0) at equilibrium (so sinh2 α = 1) are found to be

M =
3

4G5
r0 ∆z , (E.1a)

Jψ =

√
2

16π G5
r0 (∆z)2 , Jφ =

√
2

2G5
r0 a∆z , (E.1b)

A5 = 4π
√

2 (r2+ + a2)∆z , (E.1c)

where r+ = 2r0+
√

(2r0)2 − a2 and a is the Kerr rotation parameter. The four-dimensional

magnitudes are obtained using

Q =
G4Jψ
P

, J = Jψ + Jφ , (E.2)

as follows from (3.19), (3.20), and (3.24). The four-dimensional area is obtained as in (D.7).

Clearly, G4J 6= QP if a 6= 0.

For the exact solution, the configuration in which the ring is far from the NUT is

described by the limit in which ν → 0 and R̂ =
√

2(1− ην), for some fixed η. In this limit

the mass, charges and area of the exact solution become

G4Mtot

P
=

3 + η

2η
− 18η2 − 16η + 3

8η2
ν ,

Q

P
=

√
2

η
− 10η2 − 12η + 1

2
√

2η2
ν ,

G4J

P 2
=

√
2

η
− 10η2 − 12η − 3

2
√

2η2
ν ,

A4

P 2
=

16
√

2π

η2
− 8

√
2π

4η2 − 2η + 1

η3
ν . (E.3)
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It can be checked that these values match the ones of the perturbative solution given

in (E.1) after the following reparametrization:

∆z = 2πL

(

1 − 3η − 5

3
ν

)

, r0 =
L

2η

(

1 − 6η2 + 4η + 3

12η
ν

)

, a =
ν

2η
. (E.4)

One can also check that the exact metric reduces, at first order in ν and after some change of

coordinates, to that of a boosted Kerr black string, with the angular momentum parameter

a given in (E.4) and boost parameter given by sinhα = 1 + 2ν.
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